Deep learning searches for gravitational wave stochastic backgrounds

被引:1
|
作者
Utina, Andrei [1 ,2 ]
Marangio, Francesco [3 ]
Morawski, Filip [4 ]
Iess, Alberto [5 ]
Regimbau, Tania [6 ]
Fiameni, Giuseppe [7 ,8 ]
Cuoco, Elena [9 ]
机构
[1] Maastricht Univ, GWFP, Maastricht, Netherlands
[2] Nikhef, Maastricht, Netherlands
[3] LMU Munchen, Geschwister Scholl Pl 1, D-80539 Munich, Germany
[4] Polish Acad Sci, Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland
[5] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy
[6] CNRS, LAPP, 9 Chemin Bellevue, F-74941 Annecy Le Vieux, France
[7] NVIDIA AI Technol Ctr, Rome, Italy
[8] NVIDIA Corp, Santa Clara, CA USA
[9] Ist Nazl Fis Nucl, European Gravitat Observ EGO, Scuola Normale Super, Pisa, Italy
来源
2021 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI) | 2021年
关键词
Gravitational Wave Backgrounds; Deep Learning; CNN; LSTM; ET; LIGO;
D O I
10.1109/CBMI50038.2021.9461904
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The background of gravitational waves (GW) has long been studied and remains one of the most exciting aspects in the observation and analysis of gravitational radiation. The paper focuses on the search for the background of gravitational waves using deep neural networks. An astrophysical background due to the presence of many binary black hole coalescences was simulated for Advanced LIGO O3 sensitivity and the Einstein Telescope (ET) design sensitivity. The detection pipeline targets signal data out of the noisy detector background. Its architecture comprises of simulated whitened data as input to three classes of deep neural networks algorithms: a 1D and a 2D convolutional neural network (CNN) and a Long Short Term Memory (LSTM) network. It was found that all three algorithms could distinguish signals from noise with high precision for the ET sensitivity, but the current sensitivity of LIGO is too low to permit the algorithms to learn signal features from the input vectors.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [21] Semiparametric approach to the detection of non-Gaussian gravitational wave stochastic backgrounds
    Martellini, Lionel
    Regimbau, Tania
    PHYSICAL REVIEW D, 2014, 89 (12):
  • [22] Stochastic Gravitational-Wave Backgrounds: Current Detection Efforts and Future Prospects
    Renzini, Arianna I.
    Goncharov, Boris
    Jenkins, Alexander C.
    Meyers, Patrick M.
    GALAXIES, 2022, 10 (01):
  • [23] A family of filters to search for frequency-dependent gravitational wave stochastic backgrounds
    Ungarelli, C
    Vecchio, A
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (05) : S857 - S860
  • [24] Disentangling the primordial nature of stochastic gravitational wave backgrounds with CMB spectral distortions
    Cyr, Bryce
    Kite, Thomas
    Chluba, Jens
    Hill, J. Colin
    Jeong, Donghui
    Acharya, Sandeep Kumar
    Bolliet, Boris
    Patil, Subodh P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 528 (01) : 883 - 897
  • [25] Optimal strategies for gravitational wave stochastic background searches in pulsar timing data
    Anholm, Melissa
    Ballmer, Stefan
    Creighton, Jolien D. E.
    Price, Larry R.
    Siemens, Xavier
    PHYSICAL REVIEW D, 2009, 79 (08):
  • [26] Deep learning for intermittent gravitational wave signals
    Yamamoto, Takahiro S.
    Kuroyanagi, Sachiko
    Liu, Guo-Chin
    PHYSICAL REVIEW D, 2023, 107 (04)
  • [27] Boltzmann equations for astrophysical Stochastic Gravitational Wave Backgrounds scattering off of massive objects
    Pizzuti, Lorenzo
    Tomella, Alessandro
    Carbone, Carmelita
    Calabrese, Matteo
    Baccigalupi, Carlo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (02):
  • [28] Mapping incoherent gravitational wave backgrounds
    Renzini, A. I.
    Contaldi, C. R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 481 (04) : 4650 - 4661
  • [29] String interactions in gravitational wave backgrounds
    D'Appollonio, G
    Kiritsis, E
    NUCLEAR PHYSICS B, 2003, 674 (1-2) : 80 - 170
  • [30] Simultaneous estimation of astrophysical and cosmological stochastic gravitational-wave backgrounds with terrestrial detectors
    Martinovic, Katarina
    Meyers, Patrick M.
    Sakellariadou, Mairi
    Christensen, Nelson
    PHYSICAL REVIEW D, 2021, 103 (04)