Machine Learning with Missing Attributes Values Methods Implementation

被引:0
作者
Gallova, Stefania [1 ]
Augustin, Michal [1 ]
Altahr, Sakena Saied Alsadig [1 ]
机构
[1] Pavol Jozef Safarik Univ, Fac Comp Sci, Kosice, Slovakia
来源
WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, WCECS 2015, VOL II | 2015年
关键词
missing value; classification; control parameter; dataset; training set;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
One important and inconvenient problem is the presence of missing data in effort to achieve a data quality within our problem solving process. We notice the frequent occurrence of missing attributes values in real world data sets. There are some well-known strategies how to deal with missing value features within classification problem. At first, we apply five generally known investigated approaches to missing attribute values. Next, we use improved 6th approach to missing attribute values description and handling.
引用
收藏
页码:829 / 834
页数:6
相关论文
共 50 条
  • [21] Exploring Quantum Machine Learning for Enhanced Skin Lesion Classification: A Comparative Study of Implementation Methods
    Reka, S. Sofana
    Karthikeyan, H. Leela
    Shakil, A. Jack
    Venugopal, Prakash
    Muniraj, Manigandan
    [J]. IEEE ACCESS, 2024, 12 : 104568 - 104584
  • [22] Computational Methods for Data Integration and Imputation of Missing Values in Omics Datasets
    Schumann, Yannis
    Gocke, Antonia
    Neumann, Julia E.
    [J]. PROTEOMICS, 2025, 25 (1-2)
  • [23] Implementation of artificial intelligence and machine learning-based methods in brain-computer interaction
    Barnova, Katerina
    Mikolasova, Martina
    Kahankova, Radana Vilimkova
    Jaros, Rene
    Kawala-Sterniuk, Aleksandra
    Snasel, Vaclav
    Mirjalili, Seyedali
    Pelc, Mariusz
    Martinek, Radek
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163
  • [24] Combination of Machine Learning and Kriging for Spatial Estimation of Geological Attributes
    Erdogan Erten, Gamze
    Yavuz, Mahmut
    Deutsch, Clayton V.
    [J]. NATURAL RESOURCES RESEARCH, 2022, 31 (01) : 191 - 213
  • [25] Improving deep learning performance with missing values via deletion and compensation
    Sanchez-Morales, Adrian
    Sancho-Gomez, Jose-Luis
    Martinez-Garcia, Juan-Antonio
    Figueiras-Vidal, Anibal R.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (17) : 13233 - 13244
  • [26] Improving deep learning performance with missing values via deletion and compensation
    Adrián Sánchez-Morales
    José-Luis Sancho-Gómez
    Juan-Antonio Martínez-García
    Aníbal R. Figueiras-Vidal
    [J]. Neural Computing and Applications, 2020, 32 : 13233 - 13244
  • [27] Learning in Rough-Neuro-Fuzzy System for Data with Missing Values
    Nowak, Bartosz A.
    Nowicki, Robert K.
    [J]. PARALLEL PROCESSING AND APPLIED MATHEMATICS, PT I, 2012, 7203 : 501 - 510
  • [28] Machine Learning Based Missing Data Imputation in Categorical Datasets
    Ishaq, Muhammad
    Zahir, Sana
    Iftikhar, Laila
    Bulbul, Mohammad Farhad
    Rho, Seungmin
    Lee, Mi Young
    [J]. IEEE ACCESS, 2024, 12 : 88332 - 88344
  • [29] Handling missing values in healthcare data: A systematic review of deep learning-based imputation techniques
    Liu, Mingxuan
    Li, Siqi
    Yuan, Han
    Ong, Marcus Eng Hock
    Ning, Yilin
    Xie, Feng
    Saffari, Seyed Ehsan
    Shang, Yuqing
    Volovici, Victor
    Chakraborty, Bibhas
    Liu, Nan
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 142
  • [30] Implementation of machine learning techniques for disease diagnosis
    Mall, Shachi
    Srivastava, Ashutosh
    Mazumdar, Bireshwar Dass
    Mishra, Manmohan
    Bangare, Sunil L.
    Deepak, A.
    [J]. MATERIALS TODAY-PROCEEDINGS, 2022, 51 : 2198 - 2201