Machine Learning with Missing Attributes Values Methods Implementation

被引:0
|
作者
Gallova, Stefania [1 ]
Augustin, Michal [1 ]
Altahr, Sakena Saied Alsadig [1 ]
机构
[1] Pavol Jozef Safarik Univ, Fac Comp Sci, Kosice, Slovakia
来源
WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, WCECS 2015, VOL II | 2015年
关键词
missing value; classification; control parameter; dataset; training set;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
One important and inconvenient problem is the presence of missing data in effort to achieve a data quality within our problem solving process. We notice the frequent occurrence of missing attributes values in real world data sets. There are some well-known strategies how to deal with missing value features within classification problem. At first, we apply five generally known investigated approaches to missing attribute values. Next, we use improved 6th approach to missing attribute values description and handling.
引用
收藏
页码:829 / 834
页数:6
相关论文
共 50 条
  • [1] Effective Handling of Missing Values in Datasets for Classification Using Machine Learning Methods
    Palanivinayagam, Ashokkumar
    Damasevicius, Robertas
    INFORMATION, 2023, 14 (02)
  • [2] Missing the missing values: The ugly duckling of fairness in machine learning
    Fernando, Martinez-Plumed
    Cesar, Ferri
    David, Nieves
    Jose, Hernandez-Orallo
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (07) : 3217 - 3258
  • [3] Missing values handling for machine learning portfolios
    Chen, Andrew Y.
    McCoy, Jack
    JOURNAL OF FINANCIAL ECONOMICS, 2024, 155
  • [4] A Minimal Learning Machine for Datasets with Missing Values
    Paiva Mesquita, Diego P.
    Gomes, Joao Paulo P.
    Souza, Amauri H., Jr.
    NEURAL INFORMATION PROCESSING, PT I, 2015, 9489 : 565 - 572
  • [5] A Novel Approach for Dealing with Missing Values in Machine Learning Datasets with Discrete Values
    Abu-Soud, Saleh M.
    2019 INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCIS), 2019, : 118 - 122
  • [6] Systematic Review of Using Machine Learning in Imputing Missing Values
    Alabadla, Mustafa
    Sidi, Fatimah
    Ishak, Iskandar
    Ibrahim, Hamidah
    Affendey, Lilly Suriani
    Ani, Zafienas Che
    Jabar, Marzanah A.
    Bukar, Umar Ali
    Devaraj, Navin Kumar
    Muda, Ahmad Sobri
    Tharek, Anas
    Omar, Noritah
    Jaya, M. Izham Mohd
    IEEE ACCESS, 2022, 10 : 44483 - 44502
  • [7] Are missing values important for earnings forecasts? A machine learning perspective
    Uddin, Ajim
    Tao, Xinyuan
    Chou, Chia-Ching
    Yu, Dantong
    QUANTITATIVE FINANCE, 2022, 22 (06) : 1113 - 1132
  • [8] Implementation of machine learning algorithms for detecting missing radioactive material
    Durbin, Matthew
    Lintereur, Azaree
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2020, 324 (03) : 1455 - 1461
  • [9] Implementation of machine learning algorithms for detecting missing radioactive material
    Matthew Durbin
    Azaree Lintereur
    Journal of Radioanalytical and Nuclear Chemistry, 2020, 324 : 1455 - 1461
  • [10] Advanced methods for missing values imputation based on similarity learning
    Fouad K.M.
    Ismail M.M.
    Azar A.T.
    Arafa M.M.
    Ismail, Mahmoud M. (mahmoud.ismael@fci.bu.edu.eg), 1600, PeerJ Inc. (07): : 1 - 38