THE EMBEDDED CALABI-YAU CONJECTURE FOR FINITE GENUS

被引:1
|
作者
Meeks, William H., III [1 ]
Perez, Joaquin [2 ,3 ]
Ros, Antonio [2 ,3 ]
机构
[1] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
[2] Univ Granada, Dept Geometry & Topol, Granada, Spain
[3] Univ Granada, Inst Math IMAG, Granada, Spain
基金
美国国家科学基金会;
关键词
COMPLETE MINIMAL-SURFACES; FIXED GENUS; SPACE; UNIQUENESS; EXISTENCE; TOPOLOGY; GEOMETRY; THEOREM;
D O I
10.1215/00127094-2020-0087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that M is a complete, embedded minimal surface in R3 with an infinite number of ends, finite genus, and compact boundary. We prove that the simple limit ends of M have properly embedded representatives with compact boundary, genus zero, and constrained geometry. We use this result to show that if M has at least two simple limit ends, then M has exactly two simple limit ends. Furthermore, we demonstrate that M is properly embedded in R-3 if and only if M has at most two limit ends if and only if M has a countable number of limit ends.
引用
收藏
页码:2891 / 2956
页数:66
相关论文
共 50 条
  • [41] BALANCED METRICS ON NON-KAHLER CALABI-YAU THREEFOLDS
    Fu, Jixiang
    Li, Jun
    Yau, Shing-Tung
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2012, 90 (01) : 81 - 129
  • [42] Degenerated Calabi-Yau varieties with infinite components, moduli compactifications, and limit toroidal structures
    Odaka, Yuji
    EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (03) : 1105 - 1157
  • [43] Calabi-Yau algebras and the shifted noncommutative symplectic structure
    Chen, Xiaojun
    Eshmatov, Farkhod
    ADVANCES IN MATHEMATICS, 2020, 367
  • [44] Homological mirror symmetry for log Calabi-Yau surfaces
    Hacking, Paul
    Keating, Ailsa
    Lutz, Wendelin
    GEOMETRY & TOPOLOGY, 2022, 26 (08) : 3747 - 3833
  • [45] A Modular Quintic Calabi-Yau Threefold of Level 55
    Lee, Edward
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (03): : 616 - 633
  • [46] BOUNDEDNESS OF ELLIPTIC CALABI-YAU VARIETIES WITH A RATIONAL SECTION
    Birkar, Caucher
    Di Cerbo, Gabriele
    Svaldi, Roberto
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 128 (02) : 463 - 519
  • [47] The Moduli Space of Asymptotically Cylindrical Calabi-Yau Manifolds
    Conlon, Ronan J.
    Mazzeo, Rafe
    Rochon, Frederic
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (03) : 953 - 1009
  • [48] Bounded Collection of Feynman Integral Calabi-Yau Geometries
    Bourjaily, Jacob L.
    McLeod, Andrew J.
    von Hippel, Matt
    Wilhelm, Matthias
    PHYSICAL REVIEW LETTERS, 2019, 122 (03)
  • [49] Nongeometric Calabi-Yau compactifications and fractional mirror symmetry
    Israel, Dan
    PHYSICAL REVIEW D, 2015, 91 (06):
  • [50] Smoothing Pairs Over Degenerate Calabi-Yau Varieties
    Chan, Kwokwai
    Ma, Ziming Nikolas
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (04) : 2582 - 2614