THE EMBEDDED CALABI-YAU CONJECTURE FOR FINITE GENUS

被引:1
|
作者
Meeks, William H., III [1 ]
Perez, Joaquin [2 ,3 ]
Ros, Antonio [2 ,3 ]
机构
[1] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
[2] Univ Granada, Dept Geometry & Topol, Granada, Spain
[3] Univ Granada, Inst Math IMAG, Granada, Spain
基金
美国国家科学基金会;
关键词
COMPLETE MINIMAL-SURFACES; FIXED GENUS; SPACE; UNIQUENESS; EXISTENCE; TOPOLOGY; GEOMETRY; THEOREM;
D O I
10.1215/00127094-2020-0087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that M is a complete, embedded minimal surface in R3 with an infinite number of ends, finite genus, and compact boundary. We prove that the simple limit ends of M have properly embedded representatives with compact boundary, genus zero, and constrained geometry. We use this result to show that if M has at least two simple limit ends, then M has exactly two simple limit ends. Furthermore, we demonstrate that M is properly embedded in R-3 if and only if M has at most two limit ends if and only if M has a countable number of limit ends.
引用
收藏
页码:2891 / 2956
页数:66
相关论文
共 50 条
  • [31] Two Moduli Spaces of Calabi-Yau type
    Barros, Ignacio
    Mullane, Scott
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (20) : 15833 - 15849
  • [32] On the degeneration of asymptotically conical Calabi-Yau metrics
    Collins, Tristan C.
    Guo, Bin
    Tong, Freid
    MATHEMATISCHE ANNALEN, 2022, 383 (3-4) : 867 - 919
  • [33] Calabi-Yau cones from contact reduction
    Conti, Diego
    Fino, Anna
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 38 (01) : 93 - 118
  • [34] Non-Kahler Calabi-Yau Manifolds
    Tseng, Li-Sheng
    Yau, Shing-Tung
    STRING-MATH 2011, 2012, 85 : 241 - +
  • [35] Special Lagrangian Cycles and Calabi-Yau Transitions
    Collins, Tristan C.
    Gukov, Sergei
    Picard, Sebastien
    Yau, Shing-Tung
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 401 (01) : 769 - 802
  • [36] The nondegenerate generalized Kahler Calabi-Yau problem
    Apostolov, Vestislav
    Streets, Jeffrey
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 777 : 1 - 48
  • [37] ASYMPTOTICALLY CONICAL CALABI-YAU MANIFOLDS, I
    Conlon, Ronan J.
    Hein, Hans-Joachim
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (15) : 2855 - 2902
  • [38] Calabi-Yau Manifolds with Torsion and Geometric Flows
    Picard, Sebastien
    COMPLEX NON-KAHLER GEOMETRY, 2019, 2246 : 57 - 120
  • [39] ON K-STABILITY OF CALABI-YAU FIBRATIONS
    Hattori, Masafumi
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2025, : 961 - 1019
  • [40] Heavy tails in Calabi-Yau moduli spaces
    Long, Cody
    McAllister, Liam
    McGuirk, Paul
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (10): : 1 - 46