THE EMBEDDED CALABI-YAU CONJECTURE FOR FINITE GENUS

被引:1
|
作者
Meeks, William H., III [1 ]
Perez, Joaquin [2 ,3 ]
Ros, Antonio [2 ,3 ]
机构
[1] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
[2] Univ Granada, Dept Geometry & Topol, Granada, Spain
[3] Univ Granada, Inst Math IMAG, Granada, Spain
基金
美国国家科学基金会;
关键词
COMPLETE MINIMAL-SURFACES; FIXED GENUS; SPACE; UNIQUENESS; EXISTENCE; TOPOLOGY; GEOMETRY; THEOREM;
D O I
10.1215/00127094-2020-0087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that M is a complete, embedded minimal surface in R3 with an infinite number of ends, finite genus, and compact boundary. We prove that the simple limit ends of M have properly embedded representatives with compact boundary, genus zero, and constrained geometry. We use this result to show that if M has at least two simple limit ends, then M has exactly two simple limit ends. Furthermore, we demonstrate that M is properly embedded in R-3 if and only if M has at most two limit ends if and only if M has a countable number of limit ends.
引用
收藏
页码:2891 / 2956
页数:66
相关论文
共 50 条
  • [1] The Calabi-Yau problem for Riemann surfaces with finite genus and countably many ends
    Alarcon, Antonio
    Forstneric, Franc
    REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (04) : 1399 - 1412
  • [2] The refined Swampland Distance Conjecture in Calabi-Yau moduli spaces
    Blumenhagen, Ralph
    Klaewer, Daniel
    Schlechter, Lorenz
    Wolf, Florian
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (06):
  • [3] Complete Calabi-Yau metrics from smoothing Calabi-Yau complete intersections
    Firester, Benjy J.
    GEOMETRIAE DEDICATA, 2024, 218 (02)
  • [4] Octonionic Calabi-Yau Theorem
    Alesker, Semyon
    Gordon, Peter V.
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (09)
  • [5] Calabi-Yau algebras and superpotentials
    Van den Bergh, Michel
    SELECTA MATHEMATICA-NEW SERIES, 2015, 21 (02): : 555 - 603
  • [6] Calabi-Yau threefolds with boundary
    Donaldson, Simon
    Lehmann, Fabian
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2025, 21 (03) : 1119 - 1170
  • [7] Calabi-Yau algebras and their deformations
    He, Ji-Wei
    Van Oystaeyen, Fred
    Zhang, Yinhuo
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (03): : 335 - 347
  • [8] Moduli of Polarized Calabi-Yau Pairs
    Kollar, Janos
    Xu, Chen Yang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (06) : 631 - 637
  • [9] Hopf Action on Calabi-Yau algebras
    Liu, L. -Y.
    Wu, Q. -S.
    Zhu, C.
    NEW TRENDS IN NONCOMMUTATIVE ALGEBRA, 2012, 562 : 189 - 209
  • [10] The many symmetries of Calabi-Yau compactifications
    Emam, Moataz H.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (16)