Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12

被引:684
|
作者
Sharafi, Asma [1 ]
Kazyak, Eric [1 ]
Davis, Andrew L. [1 ]
Yu, Seungho [1 ]
Thompson, Travis [1 ]
Siegel, Donald J. [1 ,2 ,3 ,4 ]
Dasgupta, Neil P. [1 ]
Sakamoto, Jeff [1 ,2 ,3 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Michigan Energy Inst, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Appl Phys Program, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
GARNET-TYPE LI7LA3ZR2O12; LI-AIR BATTERIES; TEMPERATURE; XPS; CONDUCTIVITY; PERFORMANCE; STABILITY;
D O I
10.1021/acs.chemmater.7b03002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The impact of surface chemistry on the interfacial resistance between the Li7La3Zr2O12 (LLZO) solid-state electrolyte and a metallic Li electrode is revealed. Control of surface chemistry allows the interfacial resistance to be reduced to 2 Omega cm(2), lower than that of liquid electrolytes, without the need for interlayer coatings. A mechanistic understanding of the origins of ultra-low resistance is provided by quantitatively evaluating the linkages between interfacial chemistry, Li wettability, and electrochemical phenomena. A combination of Li contact angle measurements, X-ray photoelectron spectroscopy (XPS), first-principles calculations, and impedance spectroscopy demonstrates that the presence of common LLZO surface contaminants, Li2CO3 and LiOH, result in poor wettability by Li and high interfacial resistance. On procedure for removing these surface layers is demonstrated, which results in a dramatic increase in Li wetting and the elimination of nearly all interfacial resistance. The low interfacial resistance is maintained over one-hundred cycles and suggests a straightforward pathway to achieving high energy and power density solid-state batteries.
引用
收藏
页码:7961 / 7968
页数:8
相关论文
共 50 条
  • [21] Structure, Chemistry, and Charge Transfer Resistance of the Interface between Li7La3Zr2O12 Electrolyte and LiCoO2 Cathode
    Vardar, Gulin
    Bowman, William J.
    Lu, Qiyang
    Wang, Jiayue
    Chater, Richard J.
    Aguadero, Ainara
    Seibert, Rachel
    Terry, Jeff
    Hunt, Adrian
    Waluyo, Iradwikanari
    Fong, Dillon D.
    Jarry, Anglique
    Crumlin, Ethan J.
    Hellstrom, Sondra L.
    Chiang, Yet-Ming
    Yildiz, Bilge
    CHEMISTRY OF MATERIALS, 2018, 30 (18) : 6259 - 6276
  • [22] A solid-state route to stabilize cubic Li7La3Zr2O12 at low temperature for all-solid-state-battery applications
    Han, Joah
    Kim, Jae Chul
    CHEMICAL COMMUNICATIONS, 2020, 56 (96) : 15197 - 15200
  • [23] Grain Boundary Contributions to Li-Ion Transport in the Solid Electrolyte Li7La3Zr2O12 (LLZO)
    Yu, Seungho
    Siegel, Donald J.
    CHEMISTRY OF MATERIALS, 2017, 29 (22) : 9639 - 9647
  • [24] Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte
    Shao, Chongyang
    Yu, Zhiyong
    Liu, Hanxing
    Zheng, Zhenning
    Sun, Nian
    Diao, Chunli
    ELECTROCHIMICA ACTA, 2017, 225 : 345 - 349
  • [25] Native Defects and Their Doping Response in the Lithium Solid Electrolyte Li7La3Zr2O12
    Squires, Alexander G.
    Scanlon, David O.
    Morgan, Benjamin J.
    CHEMISTRY OF MATERIALS, 2020, 32 (05) : 1876 - 1886
  • [26] Compatible composite electrolyte membrane Li7La3Zr2O12/SB-PVDF for solid-state lithium ion battery
    Hou, Hongying
    Huang, Baoxiang
    Yu, Xiaohua
    Lan, Jian
    Ming, Sen
    Rong, Ju
    Liu, Xianxi
    Chen, Fangshu
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [27] Enhanced critical current density of Garnet Li7La3Zr2O12 solid electrolyte by incorporation of LiBr
    Ma, Xiaoning
    Xu, Youlong
    ELECTROCHIMICA ACTA, 2022, 409
  • [28] Garnet-type Solid-state Electrolyte Li7La3Zr2O12: Crystal Structure, Element Doping and Interface Strategies for Solid-state Lithium Batteries
    Guo, Sijie
    Sun, Yonggang
    Cao, Anmin
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (03) : 329 - 342
  • [29] Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte
    Taylor, Nathan J.
    Stangeland-Molo, Sandra
    Haslam, Catherine G.
    Sharafi, Asma
    Thompson, Travis
    Wang, Michael
    Garcia-Mendez, Regina
    Sakamoto, Jeff
    JOURNAL OF POWER SOURCES, 2018, 396 : 314 - 318
  • [30] Li7La3Zr2O12 Garnet Solid Polymer Electrolyte for Highly Stable All-Solid-State Batteries
    Nguyen, Quoc Hung
    Luu, Van Tung
    Nguyen, Hoang Long
    Lee, Young-Woo
    Cho, Younghyun
    Kim, Se Young
    Jun, Yun-Seok
    Ahn, Wook
    FRONTIERS IN CHEMISTRY, 2021, 8