Disparity-Aware Reference Frame Generation Network for Multiview Video Coding

被引:4
|
作者
Lei, Jianjun [1 ]
Zhang, Zongqian [1 ,2 ]
Pan, Zhaoqing [1 ]
Liu, Dong [3 ]
Liu, Xiangrui [1 ]
Chen, Ying [4 ]
Ling, Nam [5 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Alibaba Grp, Hangzhou 310052, Peoples R China
[3] Univ Sci & Technol China, CAS Key Lab Technol Geo Spatial Informat Proc & A, Hefei 230027, Peoples R China
[4] Alibaba Grp, Hangzhou 310052, Peoples R China
[5] Santa Clara Univ, Dept Comp Sci & Engn, Santa Clara, CA 95053 USA
基金
中国国家自然科学基金;
关键词
Image coding; Video coding; Deep learning; Image reconstruction; Estimation; Encoding; Task analysis; Multiview video coding; reference frame generation; disparity-aware alignment; DAG-Net; 3D-HEVC; VIEW SYNTHESIS; PREDICTION; EXTENSIONS;
D O I
10.1109/TIP.2022.3183436
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiview video coding (MVC) aims to compress the multiview video through the elimination of video redundancies, where the quality of the reference frame directly affects the compression efficiency. In this paper, we propose a deep virtual reference frame generation method based on a disparity-aware reference frame generation network (DAG-Net) to transform the disparity relationship between different viewpoints and generate a more reliable reference frame. The proposed DAG-Net consists of a multi-level receptive field module, a disparity-aware alignment module, and a fusion reconstruction module. First, a multi-level receptive field module is designed to enlarge the receptive field, and extract the multi-scale deep features of the temporal and inter-view reference frames. Then, a disparity-aware alignment module is proposed to learn the disparity relationship, and perform disparity shift on the inter-view reference frame to align it with the temporal reference frame. Finally, a fusion reconstruction module is utilized to fuse the complementary information and generate a more reliable virtual reference frame. Experiments demonstrate that the proposed reference frame generation method achieves superior performance for multiview video coding.
引用
收藏
页码:4515 / 4526
页数:12
相关论文
共 50 条
  • [1] SWGNet: Step-Wise Reference Frame Generation Network for Multiview Video Coding
    Zhang, Jing
    Hou, Yonghong
    Pan, Zhaoqing
    Peng, Bo
    Ling, Nam
    Lei, Jianjun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (04) : 2949 - 2958
  • [2] DEEP VIRTUAL REFERENCE FRAME GENERATION FOR MULTIVIEW VIDEO CODING
    Lei, Jianjun
    Zhang, Zongqian
    Liu, Dong
    Chen, Ying
    Ling, Nam
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1123 - 1127
  • [3] New Multi-reference Frame Selection for Multiview Video Coding
    Si, Yuehou
    Yu, Mei
    Peng, Zongju
    Jiang, Gangyi
    2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION SYSTEMS AND APPLICATIONS, PROCEEDINGS, 2009, : 39 - 42
  • [4] Enhanced Motion-Compensated Video Coding With Deep Virtual Reference Frame Generation
    Zhao, Lei
    Wang, Shiqi
    Zhang, Xinfeng
    Wang, Shanshe
    Ma, Siwei
    Gao, Wen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (10) : 4832 - 4844
  • [5] Depth Video Inter Coding Based on Deep Frame Generation
    Li, Ge
    Lei, Jianjun
    Pan, Zhaoqing
    Peng, Bo
    Ling, Nam
    IEEE TRANSACTIONS ON BROADCASTING, 2024, 70 (02) : 708 - 718
  • [6] Run-Time Adaptive Energy-Aware Motion and Disparity Estimation in Multiview Video Coding
    Zatt, Bruno
    Shafique, Muhammad
    Sampaio, Felipe
    Agostini, Luciano
    Bampi, Sergio
    Henkel, Joerg
    PROCEEDINGS OF THE 48TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2011, : 1026 - 1031
  • [7] CONTENT-ADAPTIVE REFERENCE FRAME COMPRESSION BASED ON INTRA-FRAME PREDICTION FOR MULTIVIEW VIDEO CODING
    Sampaio, Felipe
    Zatt, Bruno
    Shafique, Muhammad
    Agostini, Luciano
    Henkel, Joerg
    Bampi, Sergio
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 1831 - 1835
  • [8] Fast Mode Selection and Disparity Estimation for Multiview Video Coding
    He, Ping
    Yu, Mei
    Peng, Zongju
    Jiang, Gangyi
    IITAW: 2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATIONS WORKSHOPS, 2009, : 209 - 212
  • [9] Predictive fast motion/disparity search for multiview video coding
    Lai, PL
    Ortega, A
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2006, PTS 1 AND 2, 2006, 6077
  • [10] Energy-Efficient Memory Hierarchy for Motion and Disparity Estimation in Multiview Video Coding
    Sampaio, Felipe
    Zatt, Bruno
    Shafique, Muhammad
    Agostini, Luciano
    Bampi, Sergio
    Henkel, Joreg
    DESIGN, AUTOMATION & TEST IN EUROPE, 2013, : 665 - 670