Magnitude-image based data-consistent deep learning method for MRI super resolution

被引:2
|
作者
Lin, Ziyan [1 ]
Chen, Zihao [2 ]
机构
[1] Shanghai Starriver Bilingual Sch, High Sch, Shanghai, Peoples R China
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA USA
来源
2022 IEEE 35TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS) | 2022年
关键词
MRI; Deep Learning; Super Resolution; Data Consistency; Magnitude Image;
D O I
10.1109/CBMS55023.2022.00060
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Magnetic Resonance Imaging (MRI) is important in clinic to produce high resolution images for diagnosis, but its acquisition time is long for high resolution images. Deep learning based MRI super resolution methods can reduce scan time without complicated sequence programming, but may create additional artifacts due to the discrepancy between training data and testing data. Data consistency layer can improve the deep learning results but needs raw k-space data. In this work, we propose a magnitude-image based data consistency deep learning MRI super resolution method to improve super resolution images' quality without raw k-space data. Our experiments show that the proposed method can improve NRMSE and SSIM of super resolution images compared to the same Convolutional Neural Network (CNN) block without data consistency module.
引用
收藏
页码:302 / 305
页数:4
相关论文
共 50 条
  • [21] Image Super-resolution Reconstruction based on Deep Learning and Sparse Representation
    Lei, Qian
    Zhang, Zhao-hui
    Hao, Cun-ming
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS AND COMMUNICATION TECHNOLOGY (CNCT 2016), 2016, 54 : 546 - 555
  • [22] AN UNSUPERVISED DEEP LEARNING METHOD FOR THE SUPER-RESOLUTION OF RADAR SOUNDER DATA
    Donini, Elena
    Kasibovic, Amar
    Garcia, Miguel Hoyo
    Bruzzone, Lorenzo
    Bovolo, Francesca
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1696 - 1699
  • [23] Super-resolution musculoskeletal MRI using deep learning
    Chaudhari, Akshay S.
    Fang, Zhongnan
    Kogan, Feliks
    Wood, Jeff
    Stevens, Kathryn J.
    Gibbons, Eric K.
    Lee, Jin Hyung
    Gold, Garry E.
    Hargreaves, Brian A.
    MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (05) : 2139 - 2154
  • [24] Single Image Super Resolution Using Deep Residual Learning
    Hassan, Moiz
    Illanko, Kandasamy
    Fernando, Xavier N.
    AI, 2024, 5 (01) : 426 - 445
  • [25] Deep Learning for Remote Sensing Image Super-Resolution
    Ul Hoque, Md Reshad
    Burks, Roland, III
    Kwan, Chiman
    Li, Jiang
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 286 - 292
  • [26] Single Image Super-resolution Reconstruction with Wavelet based Deep Residual Learning
    Dou, Jianfang
    Tu, Zimei
    Peng, Xishuai
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4270 - 4275
  • [27] Image Super-Resolution Method Based on Dual Learning
    Qiu, Zhao
    Zhuang, Chunyu
    Liu, Lihao
    Lin, Jiale
    Yuan, Sheng
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (16)
  • [28] Deep Learning Based Approach Implemented to Image Super-Resolution
    Thuong Le-Tien
    Tuan Nguyen-Thanh
    Hanh-Phan Xuan
    Giang Nguyen-Truong
    Vinh Ta-Quoc
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2020, 11 (04) : 209 - 216
  • [29] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Ren, Jin-Chang
    Xu, Xin-Ying
    Zhao, Sophia
    Xie, Gang
    Masero, Valentin
    Hussain, Amir
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2019, 16 (04) : 413 - 426
  • [30] A brief survey on deep learning based image super-resolution
    Zhu X.
    Li S.
    Wang L.
    High Technology Letters, 2021, 27 (03) : 294 - 302