A new type of approximation for the radical quintic functional equation in non-Archimedean (2, β)-Banach spaces

被引:11
|
作者
El-Fassi, Iz-iddine [1 ]
机构
[1] Ibn Tofail Univ, Dept Math, Fac Sci, BP 133, Kenitra, Morocco
关键词
Non-Archimedean; (2; beta)-normed space; Hyperstability; Radical quintic functional equation; Fixed point theorem; STABILITY; HYPERSTABILITY; MAPPINGS;
D O I
10.1016/j.jmaa.2017.08.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be the set of real numbers. In this paper, we first introduce the notions of non-Archimedean (2,beta)-normed spaces (X, vertical bar vertical bar center dot,center dot vertical bar vertical bar*,(beta)) and we will reformulate the fixed point theorem [10, Theorem 1] in this space, after it, we introduce and solve the radical quintic functional equation f ((5)root x(5) + y(5)) = f(x) + f(y), x,y epsilon R. also under some weak natural assumptions on the function gamma : R x R x X -> [0,infinity), we show that this theorem is a very efficient and convenient tool for proving the hyperstability results when f : R -> X satisfy the following radical quintic inequality vertical bar vertical bar f ((5)root x(5) + y(5)) - f(x) - f(y), z vertical bar vertical bar*,(beta) <= gamma(x,y,z), x,y epsilon R backslash {0}, z epsilon X, with x NOTEQUAL; -y. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:322 / 335
页数:14
相关论文
共 50 条
  • [1] A Fixed Point Approach to Stability of k-th Radical Functional Equation in Non-Archimedean (n, β)-Banach Spaces
    EL-Fassi, Iz-iddine
    Elqorachi, Elhoucien
    Khodaei, Hamid
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (02) : 487 - 504
  • [2] Hyperstability of the General Linear Functional Equation in Non-Archimedean Banach Spaces
    Shuja, Shujauddin
    Embong, Ahmad F.
    Ali, Nor M. M.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2024, 16 (01) : 70 - 81
  • [3] On a New Type of Hyperstability for Radical Cubic Functional Equation in Non-Archimedean Metric Spaces
    El-Fassi, Iz-Iddine
    RESULTS IN MATHEMATICS, 2017, 72 (1-2) : 991 - 1005
  • [4] Approximate Solution of a p-th Root Functional Equation in Non-Archimedean (2,β)-Banach Spaces
    El-Fassi, Iz-iddine
    Khodaei, Hamid
    Rassias, Themistocles M.
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (02) : 369 - 381
  • [5] HYPERSTABILITY RESULTS FOR THE GENERAL LINEAR FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN 2-BANACH SPACES
    Shuja, Shujauddin
    Embong, Ahmad Fadillah
    Ali, Nor Muhainiah Mohd
    JOURNAL OF QUALITY MEASUREMENT AND ANALYSIS, 2024, 20 (02): : 35 - 48
  • [6] Hyperstability of the General Linear Functional Equation in Non-Archimedean Banach Spaces
    Shujauddin Shuja
    Ahmad F. Embong
    Nor M. M. Ali
    p-Adic Numbers, Ultrametric Analysis and Applications, 2024, 16 : 70 - 81
  • [7] On a New Type of Hyperstability for Radical Cubic Functional Equation in Non-Archimedean Metric Spaces
    Iz-iddine EL-Fassi
    Results in Mathematics, 2017, 72 : 991 - 1005
  • [8] Hyperstability results for a generalized radical cubic functional equation related to additive mapping in non-Archimedean Banach spaces
    Almahalebi, Muaadh
    Charifi, Ahmed
    Park, Choonkil
    Kabbaj, Samir
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (01)
  • [9] Functional inequalities in non-Archimedean Banach spaces
    Cho, Yeol Je
    Park, Choonkil
    Saadati, Reza
    APPLIED MATHEMATICS LETTERS, 2010, 23 (10) : 1238 - 1242
  • [10] Hyperstability results for a generalized radical cubic functional equation related to additive mapping in non-Archimedean Banach spaces
    Muaadh Almahalebi
    Ahmed Charifi
    Choonkil Park
    Samir Kabbaj
    Journal of Fixed Point Theory and Applications, 2018, 20