A new type of approximation for the radical quintic functional equation in non-Archimedean (2, β)-Banach spaces

被引:10
作者
El-Fassi, Iz-iddine [1 ]
机构
[1] Ibn Tofail Univ, Dept Math, Fac Sci, BP 133, Kenitra, Morocco
关键词
Non-Archimedean; (2; beta)-normed space; Hyperstability; Radical quintic functional equation; Fixed point theorem; STABILITY; HYPERSTABILITY; MAPPINGS;
D O I
10.1016/j.jmaa.2017.08.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be the set of real numbers. In this paper, we first introduce the notions of non-Archimedean (2,beta)-normed spaces (X, vertical bar vertical bar center dot,center dot vertical bar vertical bar*,(beta)) and we will reformulate the fixed point theorem [10, Theorem 1] in this space, after it, we introduce and solve the radical quintic functional equation f ((5)root x(5) + y(5)) = f(x) + f(y), x,y epsilon R. also under some weak natural assumptions on the function gamma : R x R x X -> [0,infinity), we show that this theorem is a very efficient and convenient tool for proving the hyperstability results when f : R -> X satisfy the following radical quintic inequality vertical bar vertical bar f ((5)root x(5) + y(5)) - f(x) - f(y), z vertical bar vertical bar*,(beta) <= gamma(x,y,z), x,y epsilon R backslash {0}, z epsilon X, with x NOTEQUAL; -y. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:322 / 335
页数:14
相关论文
共 38 条
[1]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[2]   Hyperstability of the Jensen functional equation [J].
Bahyrycz, A. ;
Piszczek, M. .
ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) :353-365
[3]   CLASSES OF TRANSFORMATIONS AND BORDERING TRANSFORMATIONS [J].
BOURGIN, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) :223-237
[5]   Hyperstability of the Cauchy equation on restricted domains [J].
Brzdek, J. .
ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) :58-67
[6]  
Brzdek J., 2013, Abstr. Appl. Anal, V2013, DOI [10.1155/2013/401756, DOI 10.1155/2013/401756]
[7]   Remarks on stability of some inhomogeneous functional equations [J].
Brzdek, Janusz .
AEQUATIONES MATHEMATICAE, 2015, 89 (01) :83-96
[8]   A HYPERSTABILITY RESULT FOR THE CAUCHY EQUATION [J].
Brzdek, Janusz .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) :33-40
[9]   Stability of additivity and fixed point methods [J].
Brzdek, Janusz .
FIXED POINT THEORY AND APPLICATIONS, 2013,
[10]   Remarks on hyperstability of the Cauchy functional equation [J].
Brzdek, Janusz .
AEQUATIONES MATHEMATICAE, 2013, 86 (03) :255-267