Learning Graph Convolutional Network for Skeleton-Based Human Action Recognition by Neural Searching

被引:0
|
作者
Peng, Wei [1 ]
Hong, Xiaopeng [1 ,3 ,4 ]
Chen, Haoyu [1 ]
Zhao, Guoying [1 ,2 ]
机构
[1] Univ Oulu, CMVS, Oulu, Finland
[2] Northwest Univ, Sch Informat & Technol, Xian, Peoples R China
[3] Xi An Jiao Tong Univ, Fac Elect & Informat Engn, Sch Cyber Sci & Engn, Xian, Peoples R China
[4] Res Ctr Artificial Intelligence, Peng Cheng Lab, Beijing, Peoples R China
基金
中国国家自然科学基金; 芬兰科学院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human action recognition from skeleton data, fuelled by the Graph Convolutional Network (GCN) with its powerful capability of modeling non-Euclidean data, has attracted lots of attention. However, many existing GCNs provide a pre-defined graph structure and share it through the entire network, which can loss implicit joint correlations especially for the higher-level features. Besides, the mainstream spectral GCN is approximated by one-order hop such that higher-order connections are not well involved. All of these require huge efforts to design a better GCN architecture. To address these problems, we turn to Neural Architecture Search (NAS) and propose the first automatically designed GCN for this task. Specifically, we explore the spatial-temporal correlations between nodes and build a search space with multiple dynamic graph modules. Besides, we introduce multiple-hop modules and expect to break the limitation of representational capacity caused by one-order approximation. Moreover, a corresponding sampling- and memory-efficient evolution strategy is proposed to search in this space. The resulted architecture proves the effectiveness of the higher-order approximation and the layer-wise dynamic graph modules. To evaluate the performance of the searched model, we conduct extensive experiments on two very large scale skeleton-based action recognition datasets. The results show that our model gets the state-of-the-art results in term of given metrics.
引用
收藏
页码:2669 / 2676
页数:8
相关论文
共 50 条
  • [41] Skeleton-based human action recognition using LSTM and depthwise separable convolutional neural network
    Le, Hoangcong
    Lu, Cheng-Kai
    Hsu, Chen-Chien
    Huang, Shao-Kang
    APPLIED INTELLIGENCE, 2025, 55 (04)
  • [42] Adaptive Graph Convolutional Network With Adversarial Learning for Skeleton-Based Action Prediction
    Li, Guangxin
    Li, Nanjun
    Chang, Faliang
    Liu, Chunsheng
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (03) : 1258 - 1269
  • [43] Recurrent graph convolutional networks for skeleton-based action recognition
    Zhu, Guangming
    Yang, Lu
    Zhang, Liang
    Shen, Peiyi
    Song, Juan
    Proceedings - International Conference on Pattern Recognition, 2020, : 1352 - 1359
  • [44] GRAPH CONVOLUTIONAL LSTM MODEL FOR SKELETON-BASED ACTION RECOGNITION
    Zhang, Han
    Song, Yonghong
    Zhang, Yuanlin
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 412 - 417
  • [45] Recurrent Graph Convolutional Networks for Skeleton-based Action Recognition
    Zhu, Guangming
    Yang, Lu
    Zhang, Liang
    Shen, Peiyi
    Song, Juan
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 1352 - 1359
  • [46] Deformable graph convolutional transformer for skeleton-based action recognition
    Shuo Chen
    Ke Xu
    Bo Zhu
    Xinghao Jiang
    Tanfeng Sun
    Applied Intelligence, 2023, 53 : 15390 - 15406
  • [47] Spatiotemporal Graph Autoencoder Network for Skeleton-Based Human Action Recognition
    Abduljalil, Hosam
    Elhayek, Ahmed
    Marish Ali, Abdullah
    Alsolami, Fawaz
    AI, 2024, 5 (03) : 1695 - 1708
  • [48] Deformable graph convolutional transformer for skeleton-based action recognition
    Chen, Shuo
    Xu, Ke
    Zhu, Bo
    Jiang, Xinghao
    Sun, Tanfeng
    APPLIED INTELLIGENCE, 2023, 53 (12) : 15390 - 15406
  • [49] Improved Graph Convolutional Network with Enriched Graph Topology Representation for Skeleton-Based Action Recognition
    Alsarhan, Tamam
    Harfoushi, Osama
    Shdefat, Ahmed Younes
    Mostafa, Nour
    Alshinwan, Mohammad
    Ali, Ahmad
    ELECTRONICS, 2023, 12 (04)
  • [50] Convolutional neural network with adaptive inferential framework for skeleton-based action recognition
    Huang, Hong'en
    Su, Hang
    Chang, Zhigang
    Yu, Mingyang
    Gao, Jialin
    Li, Xinzhe
    Zheng, Shibao
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 73