Asymptotic expansion and central limit theorem for quadratic variations of Gaussian processes

被引:20
作者
Begyn, Arnaud [1 ]
机构
[1] Lycee Pierre Fermat, F-31000 Toulouse, France
关键词
almost sure convergence; central limit theorem; fractional processes; Gaussian processes; generalized quadratic variations;
D O I
10.3150/07-BEJ5112
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Cohen, Guyon, Perrin and Pontier have given assumptions under which the second-order quadratic variations of a Gaussian process converge almost surely to a deterministic limit. In this paper we present two new convergence results about these variations: the first is a deterministic asymptotic expansion; the second is a central limit theorem. Next we apply these results to identify two-parameter fractional Brownian motion and anisotropic fractional Brownian motion.
引用
收藏
页码:712 / 753
页数:42
相关论文
共 17 条
  • [1] Adler R. J., 1981, GEOMETRY RANDOM FIEL
  • [2] [Anonymous], 2003, Contemporary Mathematics
  • [3] AYACHE A, 2005, P 5 ISSAC C CAT
  • [4] Baxter G, 1956, P AM MATH SOC, V7, P522
  • [5] Begyn A., 2005, ELECTRON J PROBAB, V10, P691, DOI DOI 10.1214/EJP.V10-245
  • [6] BENASSI A, 1997, REV MATH IBOAMERICA, V13, P7
  • [7] BIERME H, 2006, UNPUB ESTIMATION ANI
  • [8] BINGHAM H, 1989, REGULAR VARIATION
  • [9] Anisotropic analysis of some Gaussian models
    Bonami, A
    Estrade, A
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2003, 9 (03) : 215 - 236
  • [10] COEURJOLLY J, 2000, THESIS U GRENOBLE 1