Genome-wide screen for oxalate-sensitive mutants of Saccharomyces cerevisiae

被引:6
|
作者
Cheng, V.
Stotz, H. U.
Hippchen, K.
Bakalinsky, A. T.
机构
[1] Oregon State Univ, Dept Food Sci & Technol, Corvallis, OR 97331 USA
[2] Oregon State Univ, Dept Hort, Corvallis, OR 97331 USA
关键词
OXALIC-ACID; SCLEROTINIA-SCLEROTIORUM; CALCIUM-OXALATE; GUARD-CELLS; RESISTANCE; OVEREXPRESSION; PATHOGENICITY; RIBOFLAVIN; PATHWAY; STRESS;
D O I
10.1128/AEM.02843-06
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Oxalic acid is an important virulence factor produced by phytopathogenic filamentous fungi. In order to discover yeast genes whose orthologs in the pathogen may confer self-tolerance and whose plant orthologs may protect the host, a Saccharomyces cerevisiae deletion library consisting of 4,827 haploid mutants harboring deletions in nonessential genes was screened for growth inhibition and survival in a rich medium containing 30 mM oxalic acid at pH 3. A total of 31 mutants were identified that had significantly lower cell yields in oxalate medium than in an oxalate-free medium. About 35% of these mutants had not previously been detected in published screens for sensitivity to sorbic or citric acid. Mutants impaired in endosomal transport, the rgp1 Delta, ric1 Delta, snf7 Delta, vps16 Delta, vps20 Delta, and vps51 Delta mutants, were significantly overrepresented relative to their frequency among all verified yeast open reading frames. Oxalate exposure to a subset of five mutants, the drs2 Delta, vps16 Delta, vps51 Delta, ric1 Delta, and rib4 Delta mutants, was lethal. With the exception of the rib4 Delta mutant, all of these mutants are impaired in vesicle-mediated transport. Indirect evidence is provided suggesting that the sensitivity of the rib4 Delta mutant, a riboflavin auxotroph, is due to oxalate-mediated interference with riboflavin uptake by the putative monocarboxylate transporter Mch5.
引用
收藏
页码:5919 / 5927
页数:9
相关论文
共 50 条
  • [21] Genome-wide screen identifies genes whose inactivation confer resistance to cisplatin in Saccharomyces cerevisiae
    Huang, RY
    Eddy, M
    Vujcic, M
    Kowalski, D
    CANCER RESEARCH, 2005, 65 (13) : 5890 - 5897
  • [22] A Genome-Wide Screen for Genes Affecting Spontaneous Direct-Repeat Recombination in Saccharomyces cerevisiae
    Novarina, Daniele
    Desai, Ridhdhi
    Vaisica, Jessica A.
    Ou, Jiongwen
    Bellaoui, Mohammed
    Brown, Grant W.
    Chang, Michael
    G3-GENES GENOMES GENETICS, 2020, 10 (06): : 1853 - 1867
  • [23] Genome-wide analysis of mRNA lengths in Saccharomyces cerevisiae
    Evan H Hurowitz
    Patrick O Brown
    Genome Biology, 5 (1)
  • [24] Genome-Wide Screen for Saccharomyces cerevisiae Genes Contributing to Opportunistic Pathogenicity in an Invertebrate Model Host
    Phadke, Sujal S.
    Maclean, Calum J.
    Zhao, Serena Y.
    Mueller, Emmi A.
    Michelotti, Lucas A.
    Norman, Kaitlyn L.
    Kumar, Anuj
    James, Timothy Y.
    G3-GENES GENOMES GENETICS, 2018, 8 (01): : 63 - 78
  • [25] A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae
    Arita, Adriana
    Zhou, Xue
    Ellen, Thomas P.
    Liu, Xin
    Bai, Jingxiang
    Rooney, John P.
    Kurtz, Adrienne
    Klein, Catherine B.
    Dai, Wei
    Begley, Thomas J.
    Costa, Max
    BMC GENOMICS, 2009, 10
  • [26] Saccharomyces cerevisiae genome-wide screen for the identification of K2 killer toxin effectors
    Serviene, E.
    Orentaite, I.
    Luksa, J.
    Podoliankaite, M.
    Galvonaite, I.
    Lafontaine, D. L. J.
    Urbonavicius, J.
    FEBS JOURNAL, 2012, 279 : 233 - 233
  • [27] Genome-wide screening of aluminum tolerance in Saccharomyces cerevisiae
    Kakimoto, M
    Kobayashi, A
    Fukuda, R
    Ono, Y
    Ohta, A
    Yoshimura, E
    BIOMETALS, 2005, 18 (05) : 467 - 474
  • [28] Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae
    Hoon Park
    Yoon-Sun Hwang
    The Journal of Microbiology, 2008, 46 : 542 - 548
  • [29] Towards a genome-wide transcriptogram: the Saccharomyces cerevisiae case
    Rybarczyk-Filho, Jose Luiz
    Castro, Mauro A. A.
    Dalmolin, Rodrigo J. S.
    Moreira, Jose C. F.
    Brunnet, Leonardo G.
    de Almeida, Rita M. C.
    NUCLEIC ACIDS RESEARCH, 2011, 39 (08) : 3005 - 3016
  • [30] A Genome-Wide Enhancer Screen Implicates Sphingolipid Composition in Vacuolar ATPase Function in Saccharomyces cerevisiae
    Finnigan, Gregory C.
    Ryan, Margret
    Stevens, Tom H.
    GENETICS, 2011, 187 (03) : 771 - 783