Risk Score for Prediction of 10-Year Atrial Fibrillation: A Community-Based Study

被引:40
作者
Aronson, Doron [1 ,2 ]
Shalev, Varda [3 ,4 ]
Katz, Rachel [3 ,4 ]
Chodick, Gabriel [3 ,4 ]
Mutlak, Diab [1 ,2 ]
机构
[1] Rambam Med Ctr, Dept Cardiol, POB 9602, IL-31096 Haifa, Israel
[2] Technion Israel Inst Technol, Ruth & Bruce Rappaport Fac Med, Haifa, Israel
[3] Tel Aviv Univ, Maccabi Healthcare Serv, Tel Aviv, Israel
[4] Tel Aviv Univ, Sackler Fac Med, Tel Aviv, Israel
关键词
atrial fibrillation; models; risk assessment; DIASTOLIC DYSFUNCTION; STATIN THERAPY; HEART-FAILURE; MODEL; EPIDEMIOLOGY; INFLAMMATION; ASSOCIATION; IMPROVEMENT; PREVALENCE; SEVERITY;
D O I
10.1055/s-0038-1668522
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose We used a large real-world data from community settings to develop and validate a 10-year risk score for new-onset atrial fibrillation (AF) and calculate its net benefit performance. Methods Multivariable Cox proportional hazards model was used to estimate effects of risk factors in the derivation cohort (n = 96,778) and to derive a risk equation. Measures of calibration and discrimination were calculated in the validation cohort (n = 48,404). Results Cumulative AF incidence rates for both the derivation and validation cohorts were 5.8% at 10 years. The final models included the following variables: age, sex, body mass index, history of treated hypertension, systolic blood pressure >= 160 mm Hg, chronic lung disease, history of myocardial infarction, history of peripheral arterial disease, heart failure and history of an inflammatory disease. There was a 27-fold difference (1.0% vs. 27.2%) in AF risk between the lowest (-1) and the highest (9) sum score. The c-statistic was 0.743 (95% confidence interval [CI], 0.737-0.749) for the derivation cohort and 0.749 (95% CI, 0.741-0.759) in the validation cohort. The risk equation was well calibrated, with predicted risks closely matching observed risks. Decision curve analysis displayed consistent positive net benefit of using the AF risk score for decision thresholds between 1 and 25% 10-year AF risk. Conclusion We provide a simple score for the prediction of 10-year risk for AF. The score can be used to select patients at highest risk for treatments of modifiable risk factors, monitoring for sub-clinical AF detection or for clinical trials of primary prevention of AF.
引用
收藏
页码:1556 / 1563
页数:8
相关论文
共 37 条
[1]   Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE-AF Consortium [J].
Alonso, Alvaro ;
Krijthe, Bouwe P. ;
Aspelund, Thor ;
Stepas, Katherine A. ;
Pencina, Michael J. ;
Moser, Carlee B. ;
Sinner, Moritz F. ;
Sotoodehnia, Nona ;
Fontes, Joao D. ;
Janssens, A. Cecile J. W. ;
Kronmal, Richard A. ;
Magnani, Jared W. ;
Witteman, Jacqueline C. ;
Chamberlain, Alanna M. ;
Lubitz, Steven A. ;
Schnabel, Renate B. ;
Agarwal, Sunil K. ;
McManus, David D. ;
Ellinor, Patrick T. ;
Larson, Martin G. ;
Burke, Gregory L. ;
Launer, Lenore J. ;
Hofman, Albert ;
Levy, Daniel ;
Gottdiener, John S. ;
Kaeaeb, Stefan ;
Couper, David ;
Harris, Tamara B. ;
Soliman, Elsayed Z. ;
Stricker, Bruno H. C. ;
Gudnason, Vilmundur ;
Heckbert, Susan R. ;
Benjamin, Emelia J. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2013, 2 (02) :e000102
[2]   Inverse association between pulmonary function and C-reactive protein in apparently healthy subjects [J].
Aronson, Doron ;
Roterman, Inon ;
Yigla, Mordechay ;
Kerner, Arthur ;
Avizohar, Ophir ;
Sella, Ron ;
Bartha, Peter ;
Levy, Yishai ;
Markievvicz, Walter .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2006, 174 (06) :626-632
[3]   A Clinical Risk Score for Atrial Fibrillation in a Biracial Prospective Cohort (from the Atherosclerosis Risk In Communities [ARIC] Study) [J].
Chamberlain, Alanna M. ;
Agarwal, Sunil K. ;
Folsom, Aaron R. ;
Soliman, Elsayed Z. ;
Chambless, Lloyd E. ;
Crow, Richard ;
Ambrose, Marietta ;
Alonso, Alvaro .
AMERICAN JOURNAL OF CARDIOLOGY, 2011, 107 (01) :85-91
[4]   Several methods to assess improvement in risk prediction models: Extension to survival analysis [J].
Chambless, Lloyd E. ;
Cummiskey, Christopher P. ;
Cui, Gang .
STATISTICS IN MEDICINE, 2011, 30 (01) :22-38
[5]   Atrial fibrillation in the elderly - Facts and management [J].
Chatap, G ;
Giraud, K ;
Vincent, JP .
DRUGS & AGING, 2002, 19 (11) :819-846
[6]   The epidemiology of diabetes in a large Israeli HMO [J].
Chodick, G ;
Heymann, AD ;
Shalev, V ;
Kookia, E .
EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2003, 18 (12) :1143-1146
[7]   Worldwide Epidemiology of Atrial Fibrillation A Global Burden of Disease 2010 Study [J].
Chugh, Sumeet S. ;
Havmoeller, Rasmus ;
Narayanan, Kumar ;
Singh, David ;
Rienstra, Michiel ;
Benjamin, Emelia J. ;
Gillum, Richard F. ;
Kim, Young-Hoon ;
McAnulty, John H. ;
Zheng, Zhi-Jie ;
Forouzanfar, Mohammad H. ;
Naghavi, Mohsen ;
Mensah, George A. ;
Ezzati, Majid ;
Murray, Christopher J. L. .
CIRCULATION, 2014, 129 (08) :837-847
[8]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1136/bmj.g7594, 10.1002/bjs.9736, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0698, 10.1016/j.eururo.2014.11.025, 10.1038/bjc.2014.639, 10.1186/s12916-014-0241-z]
[9]   A multimarker approach to assess the influence of inflammation on the incidence of atrial fibrillation in women [J].
Conen, David ;
Ridker, Paul M. ;
Everett, Brendan M. ;
Tedrow, Usha B. ;
Rose, Lynda ;
Cook, Nancy R. ;
Buring, Julie E. ;
Albert, Christine M. .
EUROPEAN HEART JOURNAL, 2010, 31 (14) :1730-1736
[10]   Risk Prediction With Electronic Health Records [J].
Goldstein, Benjamin A. ;
Navar, Ann Marie ;
Pencina, Michael J. .
JAMA CARDIOLOGY, 2016, 1 (09) :976-977