On the sum of out-domination number and in-domination number of digraphs

被引:0
|
作者
Hao, Guoliang [1 ]
Qian, Jianguo [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
关键词
Out-domination number; In-domination number; Rooted tree; Contrafunctional digraph; GRAPHS; BOUNDS; SETS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vertex subset S of a digraph D = (V, A) is called an out-dominating (resp., in-dominating) set of D if every vertex in V - S is adjacent from (resp., to) some vertex in S. The out-domination (resp., in-domination) number of D, denoted by gamma(+) (D) (resp., gamma(-)(D)), is the minimum cardinality of an outdominating (resp., in-dominating) set of D. In 1999, Chartrand et al. proved that gamma(+)(D) + gamma(-) (D) <= 4n/3 for every digraph D of order n with no isolated vertices. In this paper, we determine the values of gamma(+) (D) + gamma(-) (D) for rooted trees and connected contrafunctional digraphs D, based on which we show that gamma(+)(D)+ gamma(-) (D) <= (2k+2)n/(2k+1) for every digraph D of order n with minimum out-degree or in-degree no less than 1, where 2k + 1 is the length of a shortest odd directed cycle in D. Our result partially improves the result of Chartrand et al. In particular, if D contains no odd directed cycles, then gamma(+) (D) + gamma(-) (D) <= n.
引用
收藏
页码:331 / 337
页数:7
相关论文
共 50 条
  • [41] Bounds on the 2-domination number
    Bujtas, Csilla
    Jasko, Szilard
    DISCRETE APPLIED MATHEMATICS, 2018, 242 : 4 - 15
  • [42] Domination number and feedback vertex number of complements of line graphs
    Chen, Xiaohong
    Wu, Baoyindureng
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 171 - 176
  • [43] Largest domination number and smallest independence number of forests with given degree sequence
    Gentner, Michael
    Henning, Michael A.
    Rautenbach, Dieter
    DISCRETE APPLIED MATHEMATICS, 2016, 206 : 181 - 187
  • [44] The e-mail gossip number and the connected domination number
    Harary, F
    Raghavachari, B
    APPLIED MATHEMATICS LETTERS, 1997, 10 (04) : 15 - 17
  • [45] Radius, diameter, domination number, order and minimum degree
    Mafuta, P.
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (05) : 1281 - 1291
  • [46] Packing and domination parameters in digraphs
    Mojdeh, Doost Ali
    Samadi, Babak
    Yero, Ismael G.
    DISCRETE APPLIED MATHEMATICS, 2019, 269 : 184 - 192
  • [47] The domination number and the least Q-eigenvalue
    Yu, Guanglong
    Guo, Shu-Guang
    Zhang, Rong
    Wu, Yarong
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 274 - 282
  • [48] Domination Number of Graphs Without Small Cycles
    Xue-gang Chen
    Moo Young Sohn
    Graphs and Combinatorics, 2011, 27 : 821 - 830
  • [49] Essential upper bounds on the total domination number
    Henning, Michael A.
    DISCRETE APPLIED MATHEMATICS, 2018, 244 : 103 - 115
  • [50] The ratio of the irredundance number and the domination number for block-cactus graphs
    Zverovich, VE
    JOURNAL OF GRAPH THEORY, 1998, 29 (03) : 139 - 149