On the sum of out-domination number and in-domination number of digraphs

被引:0
|
作者
Hao, Guoliang [1 ]
Qian, Jianguo [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
关键词
Out-domination number; In-domination number; Rooted tree; Contrafunctional digraph; GRAPHS; BOUNDS; SETS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vertex subset S of a digraph D = (V, A) is called an out-dominating (resp., in-dominating) set of D if every vertex in V - S is adjacent from (resp., to) some vertex in S. The out-domination (resp., in-domination) number of D, denoted by gamma(+) (D) (resp., gamma(-)(D)), is the minimum cardinality of an outdominating (resp., in-dominating) set of D. In 1999, Chartrand et al. proved that gamma(+)(D) + gamma(-) (D) <= 4n/3 for every digraph D of order n with no isolated vertices. In this paper, we determine the values of gamma(+) (D) + gamma(-) (D) for rooted trees and connected contrafunctional digraphs D, based on which we show that gamma(+)(D)+ gamma(-) (D) <= (2k+2)n/(2k+1) for every digraph D of order n with minimum out-degree or in-degree no less than 1, where 2k + 1 is the length of a shortest odd directed cycle in D. Our result partially improves the result of Chartrand et al. In particular, if D contains no odd directed cycles, then gamma(+) (D) + gamma(-) (D) <= n.
引用
收藏
页码:331 / 337
页数:7
相关论文
共 50 条
  • [21] Upper bounds on the k-domination number and the k-Roman domination number
    Hansberg, Adriana
    Volkmann, Lutz
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (07) : 1634 - 1639
  • [22] On the Independent Domination Number of Regular Graphs
    Goddard, Wayne
    Henning, Michael A.
    Lyle, Jeremy
    Southey, Justin
    ANNALS OF COMBINATORICS, 2012, 16 (04) : 719 - 732
  • [23] RADIUS, LEAF NUMBER, CONNECTED DOMINATION NUMBER AND MINIMUM DEGREE
    Mafuta, P.
    Mukwembi, S.
    Munyira, S.
    QUAESTIONES MATHEMATICAE, 2023, 46 (05) : 1009 - 1016
  • [24] Bounds on the Global Domination Number
    Desormeaux, Wyatt J.
    Gibson, Philip E.
    Haynes, Teresa W.
    QUAESTIONES MATHEMATICAE, 2015, 38 (04) : 563 - 572
  • [25] Domination cover number of graphs
    Meybodi, M. Alambardar
    Hooshmandasl, M. R.
    Sharifani, P.
    Shakiba, A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (02)
  • [26] On the rainbow restrained domination number
    Ahangar, H. Abdollahzadeh
    Amjadi, J.
    Sheikholeslami, S. M.
    Samodivkin, V.
    Volkmann, L.
    ARS COMBINATORIA, 2016, 125 : 209 - 224
  • [27] A Survey on Characterizing Trees Using Domination Number
    Manimuthu, Yamuna
    Kumarasamy, Karthika
    MATHEMATICS, 2022, 10 (13)
  • [28] Relating the annihilation number and the total domination number of a tree
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    Henning, Michael A.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (03) : 349 - 354
  • [29] On upper bounds for the independent transversal domination number
    Brause, Christoph
    Henning, Michael A.
    Ozeki, Kenta
    Schiermeyer, Ingo
    Vumar, Elkin
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 66 - 72
  • [30] BOUNDS ON THE LOCATING ROMAN DOMINATION NUMBER IN TREES
    Rad, Nader Jafari
    Rahbani, Hadi
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (01) : 49 - 62