On the sum of out-domination number and in-domination number of digraphs

被引:0
|
作者
Hao, Guoliang [1 ]
Qian, Jianguo [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
关键词
Out-domination number; In-domination number; Rooted tree; Contrafunctional digraph; GRAPHS; BOUNDS; SETS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vertex subset S of a digraph D = (V, A) is called an out-dominating (resp., in-dominating) set of D if every vertex in V - S is adjacent from (resp., to) some vertex in S. The out-domination (resp., in-domination) number of D, denoted by gamma(+) (D) (resp., gamma(-)(D)), is the minimum cardinality of an outdominating (resp., in-dominating) set of D. In 1999, Chartrand et al. proved that gamma(+)(D) + gamma(-) (D) <= 4n/3 for every digraph D of order n with no isolated vertices. In this paper, we determine the values of gamma(+) (D) + gamma(-) (D) for rooted trees and connected contrafunctional digraphs D, based on which we show that gamma(+)(D)+ gamma(-) (D) <= (2k+2)n/(2k+1) for every digraph D of order n with minimum out-degree or in-degree no less than 1, where 2k + 1 is the length of a shortest odd directed cycle in D. Our result partially improves the result of Chartrand et al. In particular, if D contains no odd directed cycles, then gamma(+) (D) + gamma(-) (D) <= n.
引用
收藏
页码:331 / 337
页数:7
相关论文
共 50 条
  • [1] On the domination number of digraphs
    Hao, Guoliang
    ARS COMBINATORIA, 2017, 134 : 51 - 60
  • [2] On the Rainbow Domination Number of Digraphs
    Hao, Guoliang
    Qian, Jianguo
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 1903 - 1913
  • [3] On the Power Domination Number of de Bruijn and Kautz Digraphs
    Grigorious, Cyriac
    Kalinowski, Thomas
    Stephen, Sudeep
    COMBINATORIAL ALGORITHMS, IWOCA 2017, 2018, 10765 : 264 - 272
  • [4] On the Equality of Domination Number and 2-Domination Number
    Ekinci, Gulnaz Boruzanli
    Bujtas, Csilla
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (01) : 383 - 406
  • [5] Total domination in digraphs
    Hao, Guoliang
    QUAESTIONES MATHEMATICAE, 2017, 40 (03) : 333 - 346
  • [6] A note on lower bounds for the total domination number of digraphs
    Hao, Guoliang
    Chen, Xiaodan
    QUAESTIONES MATHEMATICAE, 2017, 40 (04) : 553 - 562
  • [7] Bounds relating the weakly connected domination number to the total domination number and the matching number
    Hattingh, Johannes H.
    Henning, Michael A.
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (14) : 3086 - 3093
  • [8] Domination number, independent domination number and k-independence number in trees
    Cui, Qing
    Zou, Xu
    DISCRETE APPLIED MATHEMATICS, 2025, 366 : 176 - 184
  • [9] BOUNDS ON THE LOCATING-DOMINATION NUMBER AND DIFFERENTIATING-TOTAL DOMINATION NUMBER IN TREES
    Rad, Nader Jafari
    Rahbani, Hadi
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (02) : 455 - 462
  • [10] A note on connected domination number and leaf number
    Mafuta, P.
    Mukwembi, S.
    Rodrigues, B. G.
    DISCRETE MATHEMATICS, 2023, 346 (02)