Thermodynamic Model Formulations for Inhomogeneous Solids with Application to Non-isothermal Phase Field Modelling

被引:3
作者
Gladkov, Svyatoslav [1 ]
Kochmann, Julian [3 ]
Reese, Stefanie [3 ]
Hutter, Markus [4 ]
Svendsen, Bob [1 ,2 ]
机构
[1] Rhein Westfal TH Aachen, Chair Mat Mech, Aachen, Germany
[2] Max Planck Inst Eisenforsch GmbH, Dept Mat Phys & Alloy Design, D-40074 Dusseldorf, Germany
[3] Rhein Westfal TH Aachen, Inst Appl Mech, Aachen, Germany
[4] Eindhoven Univ Technol, Dept Polymer Technol, NL-5600 MB Eindhoven, Netherlands
关键词
non-equilibrium thermodynamics; GENERIC; inhomogeneous solids; non-isothermal phase field; finite deformation; EQUATIONS; FRACTURE; MOTION;
D O I
10.1515/jnet-2015-0062
中图分类号
O414.1 [热力学];
学科分类号
摘要
The purpose of the current work is the comparison of thermodynamic model formulations for chemically and structurally inhomogeneous solids at finite deformation based on "standard" non-equilibrium thermodynamics [SNET: e.g. S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland, 1962] and the general equation for non-equilibrium reversible-irreversible coupling (GENERIC) [H. C. Ottinger, Beyond Equilibrium Thermodynamics, Wiley Interscience, 2005]. In the process, non-isothermal generalizations of standard isothermal conservative [e.g. J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958), 258-267] and non-conservative [e.g. S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085-1095; A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983] diffuse interface or "phase-field" models [e.g. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys. 49 (1977), 435-479; N. Provatas and K. Elder, Phase Field Methods in Material Science and Engineering, Wiley-VCH, 2010.] for solids are obtained. The current treatment is consistent with, and includes, previous works [e.g. O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D 43 (1990), 44-62; O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model. Phys. D 69 (1993), 107-113] on non-isothermal systems as a special case. In the context of no-flux boundary conditions, the SNET- and GENERIC-based approaches are shown to be completely consistent with each other and result in equivalent temperature evolution relations.
引用
收藏
页码:131 / 139
页数:9
相关论文
共 33 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[2]  
[Anonymous], 2005, EQUILIBRIUM THERMODY
[3]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[4]   Phase-field models for microstructure evolution [J].
Chen, LQ .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :113-140
[5]   A comparative study of dendritic growth by using the extended Cahn-Hilliard model and the conventional phase-field model [J].
Choi, Jaeho ;
Park, Sung-Kyun ;
Hwang, Ho-Young ;
Huh, Joo-Youl .
ACTA MATERIALIA, 2015, 84 :55-64
[6]   Phase field modeling of directional fracture in anisotropic polycrystals [J].
Clayton, J. D. ;
Knap, J. .
COMPUTATIONAL MATERIALS SCIENCE, 2015, 98 :158-169
[7]   A phase field model of deformation twinning: Nonlinear theory and numerical simulations [J].
Clayton, J. D. ;
Knap, J. .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (9-10) :841-858
[8]  
De Groot S R., 2013, Non-equilibrium Thermodynamics
[9]  
Dreyer W., 2015, CONTINUUM MECH THERM, DOI [10.1007/s00161-015-0434-5, DOI 10.1007/S00161-015-0434-5.]
[10]   Why GENERIC? [J].
Grmela, Miroslav .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2010, 165 (17-18) :980-986