Economic performance assessment of a novel combined power generation cycle

被引:19
|
作者
Teng, Su [1 ]
Hamrang, Farzad [2 ]
Talesh, Seyed Saman Ashraf [3 ]
机构
[1] Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China
[2] Univ Tabriz, Dept Mech Engn, Tabriz 5166614766, Iran
[3] Univ Mohaghegh Ardabili, Dept Mech Engn, Ardebil, Iran
关键词
Solid oxide fuel cell; Biomass gasification; Thermoelectric generator; Multi-objective optimization; Exergoeconomic analysis; Payback period; OXIDE FUEL-CELL; MUNICIPAL SOLID-WASTE; BIOMASS GASIFICATION; MULTIOBJECTIVE OPTIMIZATION; GAS-TURBINE; MULTICRITERIA OPTIMIZATION; THERMODYNAMIC ANALYSIS; EXERGY ANALYSIS; ENERGY SYSTEM; GASIFIER;
D O I
10.1016/j.energy.2021.121092
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, to improve the performance of the thermodynamic system and reduce greenhouse gas emissions and fuel utilization, a novel power generation system based on syngas-fueled solid oxide fuel cell, gas turbine, organic flash cycle, and a thermoelectric generator was devised. The performance of the proposed system was analyzed through energy, exergy, exergoeconomic, economic, and environmental viewpoints. Finally, the multi-objective particle swarm optimization algorithm and TOPSIS and LINMAP decision-making methods were employed to obtain the optimum performance. According to the obtained results at the base operation condition, the main performance metrics were FX, FX, FX, FX, FX. For fuel cost of 3 $/GJ and electricity cost of FX, the payback time was around FXyears with a total profit of FX at the end of the economic lifetime. The parametric study revealed that the SOFC with anode and cathode gas recycling exhibits a higher exergy efficiency and lower Levelized total emissions. For the energy-cost optimization scenario, the optimum energy efficiency selected by LINMAP methods was FX, and the minimum total specific cost selected by TOPSIS method was FX. For the exergy-cost optimization scenario, the optimum exergy efficiency selected by TOPSIS was FX. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Energy, exergy, economic and emission saving analysis and multiobjective optimization of a new multi-generation system based on a solar tower with triple combined power cycle
    Colakoglu, Mert
    Durmayaz, Ahmet
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 52
  • [42] Proposal and assessment of a combined cooling and power system based on the regenerative supercritical carbon dioxide Brayton cycle integrated with an absorption refrigeration cycle for engine waste heat recovery
    Wu, Chuang
    Xu, Xiaoxiao
    Li, Qibin
    Li, Jun
    Wang, Shunsen
    Liu, Chao
    ENERGY CONVERSION AND MANAGEMENT, 2020, 207 (207)
  • [43] Performance analysis of multi turbines and SOFC combined power generation system for hypersonic vehicles
    Li, Chenghao
    Cheng, Kunlin
    Li, Chengjie
    Xiu, Xinyan
    Liu, He
    Guo, Fafu
    Qin, Jiang
    APPLIED THERMAL ENGINEERING, 2024, 257
  • [44] Thermodynamic analysis of combined power generation system based on SOFC/GT and transcritical carbon dioxide cycle
    Meng, Qingshan
    Han, Jitian
    Kong, Lingjian
    Liu, Hai
    Zhang, Tao
    Yu, Zeting
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (07) : 4673 - 4678
  • [45] Performance evaluation of CO2 pressurization and storage system combined with S-CO2 power generation process and absorption refrigeration cycle
    Wang, Ding
    Sun, Lei
    Xie, Yonghui
    ENERGY, 2023, 273
  • [46] Performance analysis of a combined power and refrigeration cycle
    Bian, Yongning
    Pan, Junxiu
    Liu, Yang
    Zhang, Fengge
    Yang, Yunjie
    Arima, Hirofumi
    ENERGY CONVERSION AND MANAGEMENT, 2019, 185 : 259 - 270
  • [47] Exergy-economic assessment of a hybrid power, cooling and heating generation system based on SOFC
    Zahedi, Rahim
    Forootan, Mohammad Mahdi
    Ahmadi, Rouhollah
    Keshavarzzadeh, Mansour
    HELIYON, 2023, 9 (05)
  • [48] Performance assessment and optimization of a novel geothermal combined cooling and power system integrating an organic flash cycle with an ammonia-water absorption refrigeration cycle
    Wu, Chuang
    Xu, Xiaoxiao
    Li, Qibin
    Li, Xiaoxiao
    Liu, Lang
    Liu, Chao
    ENERGY CONVERSION AND MANAGEMENT, 2021, 227
  • [49] Thermo-economic evaluation and multi-objective optimization of a waste heat driven combined cooling and power system based on a modified Kalina cycle
    Kalan, Ali Shokri
    Ghiasirad, Hamed
    Saray, Rahim Khoshbakhti
    Mirmasoumi, Siamak
    ENERGY CONVERSION AND MANAGEMENT, 2021, 247 (247)
  • [50] Proposal and thermo-economic optimization of using LNG cold exergy for compressor inlet cooling in an integrated biomass fueled triple combined power cycle
    Cao, Yan
    Dhahad, Hayder A.
    Togun, Hussein
    Anqi, Ali E.
    Farouk, Naeim
    Farhang, Babak
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (29) : 15351 - 15366