Einstein nilpotent Lie groups

被引:18
|
作者
Conti, Diego [1 ]
Rossi, Federico A. [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
关键词
LEFT INVARIANT METRICS; NILMANIFOLDS; NONEXISTENCE; CURVATURE; MANIFOLDS;
D O I
10.1016/j.jpaa.2018.05.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Ricci tensor of left-invariant pseudoriemannian metrics on Lie groups. For an appropriate class of Lie groups that contains nilpotent Lie groups, we introduce a variety with a natural GL(n, R) action, whose orbits parametrize Lie groups with a left-invariant metric; we show that the Ricci operator can be identified with the moment map relative to a natural symplectic structure. From this description we deduce that the Ricci operator is the derivative of the scalar curvature s under gauge transformations of the metric, and show that Lie algebra derivations with nonzero trace obstruct the existence of Einstein metrics with s not equal 0. Using the notion of nice Lie algebra, we give the first example of a left-invariant Einstein metric with s not equal 0 on a nilpotent Lie group. We show that nilpotent Lie groups of dimension <= 6 do not admit such a metric, and a similar result holds in dimension 7 with the extra assumption that the Lie algebra is nice. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:976 / 997
页数:22
相关论文
共 50 条
  • [41] Twisted conjugacy classes in nilpotent groups
    Goncalves, Daciberg
    Wong, Peter
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 633 : 11 - 27
  • [42] Minimal geodesics and nilpotent fundamental groups
    Ammann, B
    GEOMETRIAE DEDICATA, 1997, 67 (02) : 129 - 148
  • [43] On solvable Lie groups of negative Ricci curvature
    Nikolayevsky, Y.
    Nikonorov, Yu. G.
    MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (1-2) : 1 - 16
  • [44] DIRAC LIE GROUPS
    Li-Bland, David
    Meinrenken, Eckhard
    ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (05) : 779 - 815
  • [45] THE ASCENDING CENTRAL SERIES OF NILPOTENT LIE ALGEBRAS WITH COMPLEX STRUCTURE
    Latorre, Adela
    Ugarte, Luis
    Villacampa, Raquel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (06) : 3867 - 3903
  • [46] Solvable quotients or nilpotent of the orbifold groups of Kaehler
    Campana, Frederic
    MANUSCRIPTA MATHEMATICA, 2011, 135 (1-2) : 117 - 150
  • [47] Anti-abelian nearly Kahler structures on nilpotent Lie algebras
    Peyghan, E.
    Nourmohammadifar, L.
    PERIODICA MATHEMATICA HUNGARICA, 2018, 77 (02) : 291 - 317
  • [48] A characterization of Anosov rational forms in nilpotent Lie algebras associated to graphs
    Dere, Jonas
    Witdouck, Thomas
    MONATSHEFTE FUR MATHEMATIK, 2024, 204 (04): : 745 - 781
  • [49] ON NON-SINGULAR 2-STEP NILPOTENT LIE ALGEBRAS
    Lauret, Jorge
    Oscari, David
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (03) : 553 - 583
  • [50] Isometry groups of three-dimensional Lie groups
    Cosgaya, Ana
    Reggiani, Silvio
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 61 (04) : 831 - 845