Einstein nilpotent Lie groups

被引:18
|
作者
Conti, Diego [1 ]
Rossi, Federico A. [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
关键词
LEFT INVARIANT METRICS; NILMANIFOLDS; NONEXISTENCE; CURVATURE; MANIFOLDS;
D O I
10.1016/j.jpaa.2018.05.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Ricci tensor of left-invariant pseudoriemannian metrics on Lie groups. For an appropriate class of Lie groups that contains nilpotent Lie groups, we introduce a variety with a natural GL(n, R) action, whose orbits parametrize Lie groups with a left-invariant metric; we show that the Ricci operator can be identified with the moment map relative to a natural symplectic structure. From this description we deduce that the Ricci operator is the derivative of the scalar curvature s under gauge transformations of the metric, and show that Lie algebra derivations with nonzero trace obstruct the existence of Einstein metrics with s not equal 0. Using the notion of nice Lie algebra, we give the first example of a left-invariant Einstein metric with s not equal 0 on a nilpotent Lie group. We show that nilpotent Lie groups of dimension <= 6 do not admit such a metric, and a similar result holds in dimension 7 with the extra assumption that the Lie algebra is nice. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:976 / 997
页数:22
相关论文
共 50 条
  • [31] On Ricci Negative Lie Groups
    Lauret, Jorge
    Will, Cynthia E.
    GEOMETRY, LIE THEORY AND APPLICATIONS, 2022, 16 : 171 - 191
  • [32] Complex structures on nilpotent Lie algebras with one-dimensional center
    Latorre, Adela
    Ugarte, Luis
    Villacampa, Raquel
    JOURNAL OF ALGEBRA, 2023, 614 : 271 - 306
  • [33] On a spectral sequence for the cohomology of a nilpotent Lie algebra
    del Barco, Viviana
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (01)
  • [34] TWISTED DOLBEAULT COHOMOLOGY OF NILPOTENT LIE ALGEBRAS
    Ornea, Liviu
    Verbitsky, Misha
    TRANSFORMATION GROUPS, 2022, 27 (01) : 225 - 238
  • [35] Special symplectic Lie groups and hypersymplectic Lie groups
    Ni, Xiang
    Bai, Chengming
    MANUSCRIPTA MATHEMATICA, 2010, 133 (3-4) : 373 - 408
  • [36] ON RIEMANN-POISSON LIE GROUPS
    Alioune, Brahim
    Boucetta, Mohamed
    Lessiad, Ahmed Sid'Ahmed
    ARCHIVUM MATHEMATICUM, 2020, 56 (04): : 225 - 247
  • [37] On balanced Hermitian structures on Lie groups
    Medori, C.
    Tomassini, A.
    Ugarte, L.
    GEOMETRIAE DEDICATA, 2013, 166 (01) : 233 - 250
  • [38] Graphs and two-step nilpotent Lie algebras
    Mainkar, Meera G.
    GROUPS GEOMETRY AND DYNAMICS, 2015, 9 (01) : 55 - 65
  • [39] LEFT-INVARIANT ALMOST PARA-HERMITIAN STRUCTURES ON SOME SIX- DIMENSIONAL NILPOTENT LIE GROUPS
    Smolentsev, N. K.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2019, (58): : 41 - 55
  • [40] Minimal Geodesics and Nilpotent Fundamental Groups
    Bernd Ammann
    Geometriae Dedicata, 1997, 67 : 129 - 148