Signaling Gradients during Paraxial Mesoderm Development

被引:185
作者
Aulehla, Alexander [1 ]
Pourquie, Olivier [1 ,2 ,3 ]
机构
[1] Stowers Inst Med Res, Kansas City, MO 64110 USA
[2] Howard Hughes Med Inst, Kansas City, MO 64110 USA
[3] Univ Kansas, Sch Med, Dept Anat & Cell Biol, Kansas City, KS 66103 USA
基金
瑞士国家科学基金会;
关键词
ANTEROPOSTERIOR AXIS ELONGATION; SOMITE SEGMENTATION CLOCK; RETINOIC ACID; PRESOMITIC MESODERM; MOUSE EMBRYO; HOX GENES; PRIMITIVE STREAK; SONIC HEDGEHOG; POSTERIOR AXIS; NOTCH ACTIVITY;
D O I
10.1101/cshperspect.a000869
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The sequential formation of somites along the anterior-posterior axis is under control of multiple signaling gradients involving the Wnt, FGF, and retinoic acid (RA) pathways. These pathways show graded distribution of signaling activity within the paraxial mesoderm of vertebrate embryos. Although Wnt and FGF signaling show highest activity in the posterior, unsegmented paraxial mesoderm (presomitic mesoderm [PSM]), RA signaling establishes a countergradient with the highest activity in the somites. The generation of these graded activities relies both on classical source-sink mechanisms (for RA signaling) and on an RNA decay mechanism (for FGF signaling). Numerous studies reveal the tight interconnection among Wnt, FGF, and RA signaling in controlling paraxial mesoderm differentiation and in defining the somite-forming unit. In particular, the relationship to a molecular oscillator acting in somite precursors in the PSM-called the segmentation clock-has been recently addressed. These studies indicate that high levels of Wnt and FGF signaling are required for the segmentation clock activity. Furthermore, we discuss how these signaling gradients act in a dose-dependent manner in the progenitors of the paraxial mesoderm, partly by regulating cell movements during gastrulation. Finally, links between the process of axial specification of vertebral segments and Hox gene expression are discussed.
引用
收藏
页数:17
相关论文
共 131 条
[1]   Brachyury is a target gene of the Wnt/β-catenin signaling pathway [J].
Arnold, SJ ;
Stappert, J ;
Bauer, A ;
Kispert, A ;
Herrmann, BG ;
Kemler, R .
MECHANISMS OF DEVELOPMENT, 2000, 91 (1-2) :249-258
[2]   Segmentation in vertebrates: clock and gradient finally joined [J].
Aulehla, A ;
Herrmann, BG .
GENES & DEVELOPMENT, 2004, 18 (17) :2060-2067
[3]   Wnt3A plays a major role in the segmentation clock controlling somitogenesis [J].
Aulehla, A ;
Wehrle, C ;
Brand-Saberi, B ;
Kemler, R ;
Gossler, A ;
Kanzler, B ;
Herrmann, BG .
DEVELOPMENTAL CELL, 2003, 4 (03) :395-406
[4]   A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation [J].
Aulehla, Alexander ;
Wiegraebe, Winfried ;
Baubet, Valerie ;
Wahl, Matthias B. ;
Deng, Chuxia ;
Taketo, Makoto ;
Lewandoski, Mark ;
Pourquie, Olivier .
NATURE CELL BIOLOGY, 2008, 10 (02) :186-U56
[5]   The Snail genes as inducers of cell movement and survival: implications in development and cancer [J].
Barrallo-Gimeno, A ;
Nieto, MA .
DEVELOPMENT, 2005, 132 (14) :3151-3161
[6]   Fibroblast growth factor signaling during early vertebrate development [J].
Böttcher, RT ;
Niehrs, C .
ENDOCRINE REVIEWS, 2005, 26 (01) :63-77
[7]   ANALYSIS OF THE EARLY STAGES OF TRUNK NEURAL CREST MIGRATION IN AVIAN EMBRYOS USING MONOCLONAL-ANTIBODY HNK-1 [J].
BRONNERFRASER, M .
DEVELOPMENTAL BIOLOGY, 1986, 115 (01) :44-55
[8]  
Cambray N, 2002, DEVELOPMENT, V129, P4855
[9]   Two distinct sources for a population of maturing axial progenitors [J].
Cambray, Noemi ;
Wilson, Valerie .
DEVELOPMENT, 2007, 134 (15) :2829-2840
[10]   Hox genes specify vertebral types in the presomitic mesoderm [J].
Carapuço, M ;
Nóvoa, A ;
Bobola, N ;
Mallo, M .
GENES & DEVELOPMENT, 2005, 19 (18) :2116-2121