Approximate inertial manifolds for retarded semilinear parabolic equations

被引:7
作者
Rezounenko, AV [1 ]
机构
[1] Kharkov AM Gorkii State Univ, Dept Mech & Math, UA-61077 Kharkov, Ukraine
关键词
D O I
10.1016/S0022-247X(03)00199-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymptotic behavior of a system of retarded parabolic equations is considered. For any given eta > 0 we construct an approximate inertial manifold (AIM) which contains all the steady states of the system and has an attractive neighborhood of thickness eta. The dependence of AIMs on the delay time is investigated. (C) 2003 Published by Elsevier lnc.
引用
收藏
页码:614 / 628
页数:15
相关论文
共 50 条
[21]   SEMILINEAR PSEUDO-PARABOLIC EQUATIONS ON MANIFOLDS WITH CONICAL SINGULARITIES [J].
Wang, Yitian ;
Liu, Xiaoping ;
Chen, Yuxuan .
ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06) :3687-3720
[22]   Propagation and extinction of fronts for semilinear parabolic equations on Riemannian manifolds [J].
Punzo, Fabio .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 131 :325-345
[23]   Homogenization of attractors for semilinear parabolic equations on manifolds with complicated microstructure [J].
Boutet De Monvel L. ;
Chueshov I.D. ;
Khruslov E.Y.A. .
Annali di Matematica Pura ed Applicata, 1997, 172 (1) :297-322
[24]   Inertial manifolds for retarded second order in time evolution equations [J].
Rezounenko, AV .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (06) :1045-1054
[25]   Approximate controllability for semilinear retarded control equations using surjectivity results [J].
Kim, Daewook ;
Jeong, Jin-Mun ;
Cho, Seong Ho .
SYSTEMS & CONTROL LETTERS, 2019, 131
[26]   SMOOTHNESS OF INERTIAL MANIFOLDS FOR SEMILINEAR EVOLUTION EQUATIONS IN COMPLEX BANACH SPACES [J].
Takagi, Satoru .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2008, 21 (1-2) :63-80
[27]   SHARP ESTIMATES OF THE DIMENSION OF INERTIAL MANIFOLDS FOR NONLINEAR PARABOLIC EQUATIONS [J].
ROMANOV, AV .
RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1994, 43 (01) :31-47
[28]   INERTIAL MANIFOLDS FOR PARABOLIC DIFFERENTIAL EQUATIONS: THE FULLY NONAUTONOMOUS CASE [J].
Nguyen Thieu Huy ;
Pham Truong Xuan ;
Vu Thi Ngoc Ha ;
Vu Thi Thuy Ha .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (03) :943-958
[29]   Convergent families of approximate inertial manifolds for nonautonomous evolution equations [J].
Wang, ZX ;
Fan, XL ;
Zhu, ZY .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1998, 19 (08) :765-775
[30]   Convergent families of approximate inertial manifolds for nonautonomous evolution equations [J].
Zongxing W. ;
Xianling F. ;
Zhengyou Z. .
Applied Mathematics and Mechanics, 1998, 19 (8) :765-775