Glass fracture by focusing of laser-generated nanosecond surface acoustic waves

被引:11
|
作者
Veysset, David [1 ,2 ]
Kooi, Steven E. [1 ]
Haferssas, Ryadh [1 ,3 ]
Hassani-Gangaraj, Mostafa [4 ]
Islam, Mohammad [1 ,3 ]
Maznev, A. A. [1 ,2 ]
Chernukha, Yevheniia [5 ]
Zhao, Xiaoguang [6 ]
Nakagawa, Keiichi [7 ,9 ]
Martynowych, Dmitro [1 ,2 ]
Zhang, Xin [6 ]
Lomonosov, Alexey M. [8 ]
Schuh, Christopher A. [4 ]
Radovitzky, Raul [1 ,3 ]
Pezeril, Thomas [4 ]
Nelson, Keith A. [1 ,2 ]
机构
[1] MIT, Inst Soldier Nanotechnol, Cambridge, MA 02139 USA
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
[3] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
[4] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[5] Univ Maine, Inst Mol & Mat Mans, UMR CNRS 6283, F-72085 Le Mans, France
[6] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
[7] Univ Tokyo, Dept Bioengn, Tokyo 1138656, Japan
[8] Prokhorov Gen Phys Inst RAS, Moscow, Russia
[9] Univ Tokyo, Dept Precis Engn, Tokyo 1138656, Japan
基金
美国国家科学基金会;
关键词
Dynamic fracture; Surface acoustic waves; Interferometry; Glass; SPALL STRENGTH; ALUMINUM; BEHAVIOR; FAILURE;
D O I
10.1016/j.scriptamat.2018.08.026
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dynamic fracture of borosilicate glass through focusing of high-amplitude nanosecond surface acoustic waves (SAWs) at the micron scale is investigated in an all-optical experiment. SAWs are generated by a picosecond laser excitation pulse focused into a ring-shaped spot on the sample surface. Interferometric images capture the SAW as it converges towards the center, focuses, and subsequently diverges. Above a laser energy threshold, damage at the acoustic focal point is observed. Numerical calculations help us determine the time evolution of the stress distribution. We find that the glass withstands a local tensile stress of at least 6 GPa without fracture. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:42 / 45
页数:4
相关论文
共 50 条
  • [41] Probing of laser-induced crack closure by pulsed laser-generated acoustic waves
    Ni, C.
    Chigarev, N.
    Tournat, V.
    Delorme, N.
    Shen, Z.
    Gusev, V. E.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (01)
  • [42] LASER-GENERATED STRESS WAVES IN METALS
    FAIRAND, BP
    CLAUER, AH
    JOM-JOURNAL OF METALS, 1975, 27 (12): : A51 - A51
  • [43] On the polarity of laser-generated Rayleigh waves
    Mourad, A
    Desmet, C
    Thoen, J
    ULTRASONICS, 1997, 35 (05) : 393 - 397
  • [44] On the polarity of laser-generated Rayleigh waves
    Katholieke Universiteit Leuven, Leuven, Belgium
    Ultrasonics, 5 (393-397):
  • [45] LASER-GENERATED STRESS WAVES IN LIQUIDS
    SIGRIST, MW
    KNEUBUHL, FK
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1978, 64 (06): : 1652 - 1663
  • [46] LASER-GENERATED ACOUSTIC-WAVES DETECT SUBMILLIMETER FLAW IN A METAL SAMPLE
    不详
    LASER FOCUS WITH FIBEROPTIC TECHNOLOGY, 1977, 13 (07): : 30 - &
  • [47] Surface wave calibration of acoustic emission sensors with laser-generated ultrasound
    Matsuda, Y.
    Nagai, S.
    Journal of the Acoustical Society of Japan (E) (English translation of Nippon Onkyo Gakkaishi), 1994, 15 (04):
  • [48] Experimental Study of Nanosecond Laser-Generated Plasma Channels
    Levato, Tadzio
    Nevrkla, Michal
    Nawaz, Muhammad Fahad
    Giuffrida, Lorenzo
    Grepl, Filip
    Zulic, Haris
    Pilar, Jan
    Hanus, Martin
    Divoky, Martin
    Lucianetti, Antonio
    Mocek, Tomas
    Margarone, Daniele
    APPLIED SCIENCES-BASEL, 2020, 10 (12):
  • [49] ELECTROMOTIVE FORCE ASSOCIATED WITH LASER-GENERATED ACOUSTIC WAVES IN MAGNETIC MATERIALS.
    Koltok, Yu.V.
    Latynin, Yu.M.
    Soviet physics. Acoustics, 1984, 30 (03): : 195 - 197
  • [50] Laser-generated acoustic signal interaction with surface flaws on rail wheels
    Kenderian, S
    Cerniglia, D
    Djordjevic, BB
    Green, RE
    RESEARCH IN NONDESTRUCTIVE EVALUATION, 2005, 16 (04) : 195 - 207