Hydrological Extremes and Responses to Climate Change in the Kelantan River Basin, Malaysia, Based on the CMIP6 HighResMIP Experiments

被引:31
|
作者
Tan, Mou Leong [1 ]
Liang, Ju [2 ]
Samat, Narimah [1 ]
Chan, Ngai Weng [1 ]
Haywood, James M. [2 ,3 ]
Hodges, Kevin [4 ]
机构
[1] Univ Sains Malaysia, Sch Humanities, GeoInformat Unit, Geog Sect, George Town 11800, Malaysia
[2] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QE, Devon, England
[3] Met Off, FitzRoy Rd, Exeter EX1 3PB, Devon, England
[4] Univ Reading, Dept Meteorol, Reading RG6 6UR, Berks, England
关键词
climate change; CMIP6; extreme; SWAT; flood; IHA; global warming; drought; Malaysia; Kelantan; BIAS CORRECTION; CHANGE IMPACTS; DAILY PRECIPITATION; WATER-BALANCE; FLOOD RISK; PART; MODEL; SWAT; TEMPERATURE; CHALLENGES;
D O I
10.3390/w13111472
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study introduces a hydro-climatic extremes assessment framework that combines the latest climate simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) HighResMIP with the Soil and Water Assessment (SWAT) model, and examines the influence of the different climate model resolutions. Sixty-six hydrological and environmental flow indicators from the Indicators of Hydrologic Alteration (IHA) were computed to assess future extreme flows in the Kelantan River Basin (KRB), Malaysia, which is particularly vulnerable to flooding. Results show that the annual precipitation, streamflow, maximum and minimum temperatures are projected to increase by 6.9%, 9.9%, 0.8 degrees C and 0.9 degrees C, respectively, by the 2021-2050 period relative to the 1985-2014 baseline. Monthly precipitation and streamflow are projected to increase especially for the Southwest Monsoon (June-September) and the early phase of the Northeast Monsoon (December) periods. The magnitudes of the 1-, 3-, 7-, 30- and 90-day minima flows are projected to increase by 7.2% to 8.2% and the maxima flows by 10.4% to 28.4%, respectively. Lastly, changes in future hydro-climatic extremes are frequently quite different between the high-resolution and low-resolution models, e.g., the high-resolution models projected an increase of 11.8% in mean monthly flow in November-December-January compared to 3.2% for the low-resolution models.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Future Changes in Climate Extremes: Insights from CMIP6 Model Simulations for the Kagera River Sub-basin, Tanzania
    Tibangayuka, Nickson
    Mulungu, Deogratias M. M.
    Izdori, Fides
    EARTH SYSTEMS AND ENVIRONMENT, 2024,
  • [22] CMIP6 multi-model prediction of future climate change in the Hotan River Basin
    He C.
    Luo C.
    Chen F.
    Long A.
    Tang H.
    Earth Science Frontiers, 2023, 30 (03) : 515 - 528
  • [23] Hydrological responses to climate change in Yarlung Zangbo River basin, Southwest China
    Xuan, Weidong
    Xu, Yue-Ping
    Fu, Qiang
    Booij, Martijn J.
    Zhang, Xujie
    Pan, Suli
    JOURNAL OF HYDROLOGY, 2021, 597
  • [24] Assessment of climate change impact on meteorological variables of Indravati River Basin using SDSM and CMIP6 models
    Challa, Venkateswarlu
    Renganathan, Manjula
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 197 (01)
  • [25] Modeling the Impact of Climate Change on Streamflow in the Meghna River Basin: An Analysis Using SWAT and CMIP6 Scenarios
    Mamoon, Wasif Bin
    Jahan, Nasreen
    Abdullah, Faruque
    Rahman, Ataur
    WATER, 2024, 16 (08)
  • [26] Impact of climate change on hydrological extremes in the Yangtze River Basin, China
    Huanghe Gu
    Zhongbo Yu
    Guiling Wang
    Jigan Wang
    Qin Ju
    Chuanguo Yang
    Chuanhao Fan
    Stochastic Environmental Research and Risk Assessment, 2015, 29 : 693 - 707
  • [27] Simulating the hydrological responses to climate change of the Xiang River basin, China
    Wang, Guoqing
    Zhang, Jianyun
    Pagano, Thomas C.
    Xu, Yueping
    Bao, Zhenxin
    Liu, Yanli
    Jin, Junliang
    Liu, Cuishan
    Song, Xiaomeng
    Wan, Sicheng
    THEORETICAL AND APPLIED CLIMATOLOGY, 2016, 124 (3-4) : 769 - 779
  • [28] Predicting soil erosion potential under CMIP6 climate change scenarios in the Chini Lake Basin, Malaysia
    Muhammad Rendana
    Wan Mohd Razi Idris
    Sahibin Abdul Rahim
    Zulfahmi Ali Rahman
    Tukimat Lihan
    Geoscience Letters, 10
  • [29] Evaluation of historical CMIP6 model simulations and future climate change projections in the Baro River Basin
    Gebisa, Bekele T. T.
    Dibaba, Wakjira Takala
    Kabeta, Alemayehu
    JOURNAL OF WATER AND CLIMATE CHANGE, 2023, 14 (08) : 2680 - 2705
  • [30] Prediction of the soil water content in the Luanhe river basin based on CMIP6
    Zhang, Ting
    Wang, Linhao
    Li, Jianzhu
    Feng, Ping
    JOURNAL OF CLEANER PRODUCTION, 2023, 425