Nanotargeting of Resistant Infections with a Special Emphasis on the Biofilm Landscape

被引:15
作者
Alabresm, Amjed [3 ,4 ]
Chandler, Savannah L. [1 ]
Benicewicz, Brian C. [1 ,2 ]
Decho, Alan W. [3 ]
机构
[1] Univ South Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA
[2] Univ South Carolina, Usc Nano Ctr, Columbia, SC 29208 USA
[3] Univ South Carolina, Dept Environm Hlth Sci, Columbia, SC 29208 USA
[4] Univ Basrah, Marine Sci Ctr, Dept Biol Dev Shaft Al Arab & N Arabian Gulf, Basrah, Iraq
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
BIOSYNTHESIZED SILVER NANOPARTICLES; GRAM-NEGATIVE BACTERIA; PSEUDOMONAS-AERUGINOSA; ANTIMICROBIAL ACTIVITY; OXIDE NANOPARTICLES; ESCHERICHIA-COLI; ANTIBACTERIAL ACTIVITY; OUTER-MEMBRANE; NEW-GENERATION; DRUG-DELIVERY;
D O I
10.1021/acs.bioconjchem.1c00116
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Bacterial resistance to antimicrobial compounds is a growing concern in medical and public health circles. Overcoming the adaptable and duplicative resistance mechanisms of bacteria requires chemistry-based approaches. Engineered nanoparticles (NPs) now offer unique advantages toward this effort. However, most in situ infections (in humans) occur as attached biofilms enveloped in a protective surrounding matrix of extracellular polymers, where survival of microbial cells is enhanced. This presents special considerations in the design and deployment of antimicrobials. Here, we review recent efforts to combat resistant bacterial strains using NPs and, then, explore how NP surfaces may be specifically engineered to enhance the potency and delivery of antimicrobial compounds. Special NP-engineering challenges in the design of NPs must be overcome to penetrate the inherent protective barriers of the biofilm and to successfully deliver antimicrobials to bacterial cells. Future challenges are discussed in the development of new antibiotics and their mechanisms of action and targeted delivery via NPs.
引用
收藏
页码:1411 / 1430
页数:20
相关论文
共 234 条
[61]  
Doudna J.A., 2016, CRISPR-Cas: a laboratory manual
[62]   Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation [J].
Dueholm, Morten S. ;
Sondergaard, Mads T. ;
Nilsson, Martin ;
Christiansen, Gunna ;
Stensballe, Allan ;
Overgaard, Michael T. ;
Givskov, Michael ;
Tolker-Nielsen, Tim ;
Otzen, Daniel E. ;
Nielsen, Per H. .
MICROBIOLOGYOPEN, 2013, 2 (03) :365-382
[63]   Nanoparticle-Stabilized Capsules for the Treatment of Bacterial Biofilms [J].
Duncan, Bradley ;
Li, Xiaoning ;
Landis, Ryan F. ;
Kim, Sung Tae ;
Gupta, Akash ;
Wang, Li-Sheng ;
Ramanathan, Rajesh ;
Tang, Rui ;
Boerth, Jeffrey A. ;
Rotello, Vincent M. .
ACS NANO, 2015, 9 (08) :7775-7782
[64]   EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers [J].
Ehrnhoefer, Dagmar E. ;
Bieschke, Jan ;
Boeddrich, Annett ;
Herbst, Martin ;
Masino, Laura ;
Lurz, Rudi ;
Engemann, Sabine ;
Pastore, Annalisa ;
Wanker, Erich E. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2008, 15 (06) :558-566
[65]   Ceragenins (Cationic Steroid Compounds), a Novel Class of Antimicrobial Agents [J].
Epand, Richard M. ;
Epand, Raquel F. ;
Savage, Paul B. .
DRUG NEWS & PERSPECTIVES, 2008, 21 (06) :307-311
[66]   Interactions of Silver Nanoparticles with Pseudomonas putida Biofilms [J].
Fabrega, Julia ;
Renshaw, Joanna C. ;
Lead, Jamie R. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (23) :9004-9009
[67]   Antibiotics and Bacterial Resistance in the 21st Century [J].
Fair, Richard J. ;
Tor, Yitzhak .
PERSPECTIVES IN MEDICINAL CHEMISTRY, 2014, 6 :25-64
[68]  
Fang CL, 2014, THER DELIV, V5, P991, DOI [10.4155/tde.14.61, 10.4155/TDE.14.61]
[69]  
Ferry JL, 2009, NAT NANOTECHNOL, V4, P441, DOI [10.1038/nnano.2009.157, 10.1038/NNANO.2009.157]
[70]   Cationic Amphiphiles, a New Generation of Antimicrobials Inspired by the Natural Antimicrobial Peptide Scaffold [J].
Findlay, Brandon ;
Zhanel, George G. ;
Schweizer, Frank .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2010, 54 (10) :4049-4058