Solution and dynamics analysis of a fractional-order hyperchaotic system

被引:33
作者
He, Shaobo [1 ]
Sun, Kehui [1 ,2 ]
Wang, Huihai [1 ]
机构
[1] Cent S Univ, Sch Phys & Elect, Changsha 410083, Peoples R China
[2] Xinjiang Univ, Sch Phys Sci & Technol, Urumqi 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional-order calculus; chaos; Adomian decomposition method; Lyapunov characteristic exponents; C-0; complexity; LYAPUNOV EXPONENTS; CHAOTIC SYSTEM; CHEN SYSTEM; SYNCHRONIZATION; APPROXIMATION; ROSSLER;
D O I
10.1002/mma.3743
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerical solution and chaotic behaviors of the fractional-order simplified Lorenz hyperchaotic system are investigated in this paper. The solution of the fractional-order hyperchaotic system is obtained by employing Adomian decomposition method. Lyapunov characteristic exponents algorithm for the fractional-order chaotic system is designed. Dynamics of the fractional-order hyperchaotic systemare analyzed by means of bifurcation diagrams, Lyapunov characteristic exponents, C-0 complexity, and chaos diagram. It shows that this systemhas rich dynamical behaviors, and it ismore complex when the fractional order q is small. It lays a foundation for the practical application of the fractional-order hyperchaotic systems. Copyright (C) 2015 JohnWiley & Sons, Ltd.
引用
收藏
页码:2965 / 2973
页数:9
相关论文
共 27 条
[1]   A REVIEW OF THE DECOMPOSITION METHOD AND SOME RECENT RESULTS FOR NONLINEAR EQUATIONS [J].
ADOMIAN, G .
MATHEMATICAL AND COMPUTER MODELLING, 1990, 13 (07) :17-43
[2]   BIFURCATION AND CHAOS IN THE FRACTIONAL-ORDER CHEN SYSTEM VIA A TIME-DOMAIN APPROACH [J].
Cafagna, Donato ;
Grassi, Giuseppe .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (07) :1845-1863
[3]   HYPERCHAOS IN THE FRACTIONAL-ORDER ROSSLER SYSTEM WITH LOWEST-ORDER [J].
Cafagna, Donato ;
Grassi, Giuseppe .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (01) :339-347
[4]   Quantitative analysis of brain optical images with 2D Co complexity measure [J].
Cao, Yang ;
Cai, Zhijie ;
Shen, Enhua ;
Shen, Wei ;
Chen, Xin ;
Gu, Fanji ;
Shou, Tiande .
JOURNAL OF NEUROSCIENCE METHODS, 2007, 159 (01) :181-186
[5]   AN APPLICATION OF ADOMIAN DECOMPOSITION FOR ANALYSIS OF FRACTIONAL-ORDER CHAOTIC SYSTEMS [J].
Caponetto, R. ;
Fazzino, S. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (03)
[6]   FRACTAL SYSTEM AS REPRESENTED BY SINGULARITY FUNCTION [J].
CHAREF, A ;
SUN, HH ;
TSAO, YY ;
ONARAL, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) :1465-1470
[7]   Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks [J].
Chen, Diyi ;
Zhang, Runfan ;
Liu, Xinzhi ;
Ma, Xiaoyi .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (12) :4105-4121
[8]   Circuit simulation for synchronization of a fractional-order and integer-order chaotic system [J].
Chen, Diyi ;
Wu, Cong ;
Iu, Herbert H. C. ;
Ma, Xiaoyi .
NONLINEAR DYNAMICS, 2013, 73 (03) :1671-1686
[9]   Application of Takagi-Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization [J].
Chen, Diyi ;
Zhao, Weili ;
Sprott, Julien Clinton ;
Ma, Xiaoyi .
NONLINEAR DYNAMICS, 2013, 73 (03) :1495-1505
[10]  
Chen GD, 2013, SMART MATER STRUCT, V22, P1