Tuning the band gap and optical spectra of silicon-doped graphene: Many-body effects and excitonic states

被引:133
作者
Shahrokhi, Masoud [1 ]
Leonard, Celine [1 ]
机构
[1] Univ Paris Est, MSME, Lab Modelisat & Simulat Multi Echelle, UMR 8208,CNRS, 5 Bd Descartes, F-77454 Marne La Vallee, France
关键词
Graphene; Density functional theory; GW calculation; BSE approach; QUASI-PARTICLE ENERGIES; MAGNETIC-PROPERTIES; EXCITATIONS; SINGLE; GRAPHITE; FE; CO; FLUOROGRAPHENE; SEMICONDUCTOR; ADSORPTION;
D O I
10.1016/j.jallcom.2016.10.101
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work we carried out density functional theory calculations combined with many-body perturbation formalism to study the structural, electronic and optical properties of a monolayer graphene sheet doped with Si. The electronic properties are analyzed at three levels of many-body GWapproach (G(0)W(0), GW(0) and GW) constructed over a Generalized Gradient Approximation functional. By substituting carbon atoms by silicon atoms on graphene, the band gap of these materials can be continuously tuned by changing the concentration of Si. The optical properties and excitonic effects in these materials are investigated using the Bethe-Salpeter equation approach. The exciton energies show that these materials can absorb the visible light, and that the absolute positions of the excitonic peaks depend on the Si concentration. The optical absorption spectra of the Si-doped graphene are dominated by bound Frenkel exciton and the silicon doping increases the optical conductivity of graphene in the visible range. These materials may be applied in photonic and optoelectronic devices such as solar cells and light-emitters. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1185 / 1196
页数:12
相关论文
共 99 条
[1]   All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid [J].
Abb, Martina ;
Albella, Pablo ;
Aizpurua, Javier ;
Muskens, Otto L. .
NANO LETTERS, 2011, 11 (06) :2457-2463
[2]   Tunable bandgap opening in the proposed structure of silicon-doped graphene [J].
Azadeh, M. S. Sharif ;
Kokabi, A. ;
Hosseini, M. ;
Fardmanesh, M. .
MICRO & NANO LETTERS, 2011, 6 (08) :582-585
[3]   Theoretical exploration of structural, electro-optical and magnetic properties of gallium-doped silicon carbide nanotubes [J].
Behzad, Somayeh ;
Chegel, Raad ;
Moradian, Rostam ;
Shahrokhi, Masoud .
SUPERLATTICES AND MICROSTRUCTURES, 2014, 73 :185-192
[4]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[5]  
Blaha P., 2001, Calculating Cryst. Prop., V60
[6]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[7]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[8]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[9]   Chemical functionalization of graphene [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (34)
[10]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493