Performance evaluation of MIND demons deformable registration of MR and CT images in spinal interventions

被引:7
|
作者
Reaungamornrat, S. [1 ]
De Silva, T. [2 ]
Uneri, A. [1 ]
Goerres, J. [2 ]
Jacobson, M. [2 ]
Ketcha, M. [2 ]
Vogt, S. [3 ]
Kleinszig, G. [3 ]
Khanna, A. J. [4 ]
Wolinsky, J-P [5 ]
Prince, J. L. [1 ,2 ,6 ]
Siewerdsen, J. H. [1 ,2 ,5 ]
机构
[1] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21202 USA
[3] Siemens Healthcare XP Div, D-91052 Erlangen, Germany
[4] Johns Hopkins Orthopaed Surgery DC, Dept Orthopaed Surg, Bethesda, MD 20817 USA
[5] Johns Hopkins Univ Hosp, Dept Neurosurg, Baltimore, MD 21202 USA
[6] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
基金
美国国家卫生研究院;
关键词
deformable image registration; Demons algorithm; symmetric diffeomorphism; multimodality image registration; MIND; CT; image-guided surgery; LUMBAR INTERBODY FUSION; COMPUTED-TOMOGRAPHY; PEDICLE SCREWS; CERVICAL-SPINE; SURGERY; NAVIGATION; PLACEMENT; TRAUMA; ARM; COMPLICATIONS;
D O I
10.1088/0031-9155/61/23/8276
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate intraoperative localization of target anatomy and adjacent nervous and vascular tissue is essential to safe, effective surgery, and multimodality deformable registration can be used to identify such anatomy by fusing preoperative CT or MR images with intraoperative images. A deformable image registration method has been developed to estimate viscoelastic diffeomorphisms between preoperative MR and intraoperative CT using modality-independent neighborhood descriptors ( MIND) and aHuber metric for robust registration. The method, called MIND Demons, optimizes a constrained symmetric energy functional incorporating priors on smoothness, geodesics, and invertibility by alternating between Gauss-Newton optimization and Tikhonov regularization in a multiresolution scheme. Registration performance was evaluated for the MIND Demons method with a symmetric energy formulation in comparison to an asymmetric form, and sensitivity to anisotropic MR voxel-size was analyzed in phantom experiments emulating image-guided spine-surgery in comparison to a free-form deformation (FFD) method using local mutual information (LMI). Performance was validated in a clinical study involving 15 patients undergoing intervention of the cervical, thoracic, and lumbar spine. The target registration error (TRE) for the symmetric MIND Demons formulation (1.3 +/- 0.8 mm (median +/- interquartile)) outperformed the asymmetric form (3.6 +/- 4.4 mm). The method demonstrated fairly minor sensitivity to anisotropic MR voxel size, with median TRE ranging 1.3-2.9 mm for MR slice thickness ranging 0.9-9.9 mm, compared to TRE = 3.2-4.1 mm for LMI FFD over the same range. Evaluation in clinical data demonstrated sub-voxel TRE (< 2 mm) in all fifteen cases with realistic deformations that preserved topology with sub-voxel invertibility (0.001 mm) and positive-determinant spatial Jacobians. The approach therefore appears robust against realistic anisotropic resolution characteristics in MR and yields registration accuracy suitable to application in image-guided spine-surgery.
引用
收藏
页码:8276 / 8297
页数:22
相关论文
共 50 条
  • [41] Incorporating Tissue Excision in Deformable Image Registration: A Modified Demons Algorithm for Cone-Beam CT-Guided Surgery
    Nithiananthan, S.
    Mirota, D.
    Uneri, A.
    Schafer, S.
    Otake, Y.
    Stayman, J. W.
    Siewerdsen, J. H.
    MEDICAL IMAGING 2011: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND MODELING, 2011, 7964
  • [42] dPIRPLE: a joint estimation framework for deformable registration and penalized-likelihood CT image reconstruction using prior images
    Dang, H.
    Wang, A. S.
    Sussman, Marc S.
    Siewerdsen, J. H.
    Stayman, J. W.
    PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (17) : 4799 - 4826
  • [43] Deep Learning-based Deformable Registration of Dynamic Contrast-Enhanced MR Images of the Kidney
    Huang, James
    Guo, Junyu
    Pedrosa, Ivan
    Fei, Baowei
    MEDICAL IMAGING 2022: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2022, 12034
  • [44] Evaluation of the effect of user-guided deformable image registration of thoracic images on registration accuracy among users
    Nakajima, Yujiro
    Kadoya, Noriyuki
    Kanai, Takayuki
    Saito, Masahide
    Kito, Satoshi
    Hashimoto, Shimpei
    Karasawa, Katsuyuki
    Jingu, Keiichi
    MEDICAL DOSIMETRY, 2020, 45 (03) : 206 - 212
  • [45] Evaluation of Deformable Registration for Correcting Respiratory Motion in 4DCT Lung Images
    Larrue, A.
    van Elmpt, W.
    Kaster, F.
    Kadir, T.
    Gooding, M.
    MEDICAL PHYSICS, 2014, 41 (06) : 196 - 196
  • [46] Evaluation of a commercial deformable image registration algorithm for dual-energy CT processing
    Huang, Jessie Y.
    Lawless, Michael J.
    Matrosic, Charles K.
    Di Maso, Lianna D.
    Miller, Jessica R.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2020, 21 (09): : 227 - 234
  • [47] Towards Personalized Biomechanical Model and MIND-Weighted Point Matching for Robust Deformable MR-TRUS Registration
    Wang, Yi
    Ni, Dong
    Qin, Jing
    Lin, Muqing
    Xie, Xiaoyan
    Xu, Ming
    Heng, Pheng Ann
    COMPUTER-ASSISTED AND ROBOTIC ENDOSCOPY, CARE 2014, 2014, 8899 : 121 - 130
  • [48] Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers
    Wognum, S.
    Heethuis, S. E.
    Rosario, T.
    Hoogeman, M. S.
    Bel, A.
    MEDICAL PHYSICS, 2014, 41 (07)
  • [49] 3D deformable registration of longitudinal abdominopelvic CT images using unsupervised deep learning
    van Eijnatten, Maureen
    Rundo, Leonardo
    Batenburg, K. Joost
    Lucka, Felix
    Beddowes, Emma
    Caldas, Carlos
    Gallagher, Ferdia A.
    Sala, Evis
    Schonlieb, Carola-Bibiane
    Woitek, Ramona
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 208
  • [50] Rigid 2D/3D registration of intraoperative digital X-ray images and preoperative CT and MR images
    Tomazevic, D
    Likar, B
    Pernus, F
    MEDICAL IMAGING 2002: IMAGE PROCESSING, VOL 1-3, 2002, 4684 : 507 - 517