Performance evaluation of MIND demons deformable registration of MR and CT images in spinal interventions

被引:7
|
作者
Reaungamornrat, S. [1 ]
De Silva, T. [2 ]
Uneri, A. [1 ]
Goerres, J. [2 ]
Jacobson, M. [2 ]
Ketcha, M. [2 ]
Vogt, S. [3 ]
Kleinszig, G. [3 ]
Khanna, A. J. [4 ]
Wolinsky, J-P [5 ]
Prince, J. L. [1 ,2 ,6 ]
Siewerdsen, J. H. [1 ,2 ,5 ]
机构
[1] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21202 USA
[3] Siemens Healthcare XP Div, D-91052 Erlangen, Germany
[4] Johns Hopkins Orthopaed Surgery DC, Dept Orthopaed Surg, Bethesda, MD 20817 USA
[5] Johns Hopkins Univ Hosp, Dept Neurosurg, Baltimore, MD 21202 USA
[6] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2016年 / 61卷 / 23期
基金
美国国家卫生研究院;
关键词
deformable image registration; Demons algorithm; symmetric diffeomorphism; multimodality image registration; MIND; CT; image-guided surgery; LUMBAR INTERBODY FUSION; COMPUTED-TOMOGRAPHY; PEDICLE SCREWS; CERVICAL-SPINE; SURGERY; NAVIGATION; PLACEMENT; TRAUMA; ARM; COMPLICATIONS;
D O I
10.1088/0031-9155/61/23/8276
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate intraoperative localization of target anatomy and adjacent nervous and vascular tissue is essential to safe, effective surgery, and multimodality deformable registration can be used to identify such anatomy by fusing preoperative CT or MR images with intraoperative images. A deformable image registration method has been developed to estimate viscoelastic diffeomorphisms between preoperative MR and intraoperative CT using modality-independent neighborhood descriptors ( MIND) and aHuber metric for robust registration. The method, called MIND Demons, optimizes a constrained symmetric energy functional incorporating priors on smoothness, geodesics, and invertibility by alternating between Gauss-Newton optimization and Tikhonov regularization in a multiresolution scheme. Registration performance was evaluated for the MIND Demons method with a symmetric energy formulation in comparison to an asymmetric form, and sensitivity to anisotropic MR voxel-size was analyzed in phantom experiments emulating image-guided spine-surgery in comparison to a free-form deformation (FFD) method using local mutual information (LMI). Performance was validated in a clinical study involving 15 patients undergoing intervention of the cervical, thoracic, and lumbar spine. The target registration error (TRE) for the symmetric MIND Demons formulation (1.3 +/- 0.8 mm (median +/- interquartile)) outperformed the asymmetric form (3.6 +/- 4.4 mm). The method demonstrated fairly minor sensitivity to anisotropic MR voxel size, with median TRE ranging 1.3-2.9 mm for MR slice thickness ranging 0.9-9.9 mm, compared to TRE = 3.2-4.1 mm for LMI FFD over the same range. Evaluation in clinical data demonstrated sub-voxel TRE (< 2 mm) in all fifteen cases with realistic deformations that preserved topology with sub-voxel invertibility (0.001 mm) and positive-determinant spatial Jacobians. The approach therefore appears robust against realistic anisotropic resolution characteristics in MR and yields registration accuracy suitable to application in image-guided spine-surgery.
引用
收藏
页码:8276 / 8297
页数:22
相关论文
共 50 条
  • [1] MIND Demons: Symmetric Diffeomorphic Deformable Registration of MR and CT for Image-Guided Spine Surgery
    Reaungamornrat, Sureerat
    De Silva, Tharindu
    Uneri, Ali
    Vogt, Sebastian
    Kleinszig, Gerhard
    Khanna, Akhil J.
    Wolinsky, Jean-Paul
    Prince, Jerry L.
    Siewerdsen, Jeffrey H.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (11) : 2413 - 2424
  • [2] MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery
    Reaungamornrat, S.
    De Silva, T.
    Uneri, A.
    Wolinsky, J. -P.
    Khanna, A. J.
    Kleinszig, G.
    Vogt, S.
    Prince, J. L.
    Siewerdsen, J. H.
    MEDICAL IMAGING 2016: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2016, 9786
  • [3] Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach
    Nithiananthan, Sajendra
    Schafer, Sebastian
    Uneri, Ali
    Mirota, Daniel J.
    Stayman, J. Webster
    Zbijewski, Wojciech
    Brock, Kristy K.
    Daly, Michael J.
    Chan, Harley
    Irish, Jonathan C.
    Siewerdsen, Jeffrey H.
    MEDICAL PHYSICS, 2011, 38 (04) : 1785 - 1798
  • [4] Benchmarking and performance evaluation of a novel deformable image registration software for radiotherapy CT images
    Alshammari, Shorug S.
    Yaddanapudi, Sridhar
    Ivancic, Rok
    Anderle, Kristjan
    Li, Jonathan G.
    Furutani, Keith M.
    Beltran, Chris J.
    Lu, Bo
    TECHNICAL INNOVATIONS & PATIENT SUPPORT IN RADIATION ONCOLOGY, 2024, 32
  • [5] Demons Deformable Registration for Cone-Beam CT Guidance: Registration of Pre- and Intra-Operative Images
    Nithiananthan, S.
    Brock, K. K.
    Daly, M. J.
    Chan, H.
    Irish, J. C.
    Siewerdsen, J. H.
    MEDICAL IMAGING 2010: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND MODELING, 2010, 7625
  • [6] Evaluation of deformable image registration accuracy for CT images of the thorax region
    Sarudis, Sebastian
    Karlsson, Anna
    Bibac, Dan
    Nyman, Jan
    Back, Anna
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2019, 57 : 191 - 199
  • [7] Evaluation of a Learning-based Deformable Registration Method on Abdominal CT Images
    Bhattacharjee, R.
    Heitz, F.
    Noblet, V
    Sharma, S.
    Sharma, N.
    IRBM, 2021, 42 (02) : 94 - 105
  • [8] Multirigid registration of MR and CT images of the cervical spine
    Hu, YQ
    Haynor, DR
    MEDICAL IMAGING 2004: IMAGE PROCESSING, PTS 1-3, 2004, 5370 : 1527 - 1538
  • [9] Evaluation of Progressive Architectural Distortion in Idiopathic Pulmonary Fibrosis Using Deformable Registration of Sequential CT Images
    Yasuda, Naofumi
    Iwasawa, Tae
    Baba, Tomohisa
    Misumi, Toshihiro
    Cheng, Shihyao
    Kato, Shingo
    Utsunomiya, Daisuke
    Ogura, Takashi
    DIAGNOSTICS, 2024, 14 (15)
  • [10] Comparison of demons deformable registration-based methods for texture analysis of serial thoracic CT scans
    Cunliffe, Alexandra R.
    Al-Hallaq, Hania A.
    Fei, Xianhan M.
    Tuohy, Rachel E.
    Armato, Samuel G., III
    MEDICAL IMAGING 2013: COMPUTER-AIDED DIAGNOSIS, 2013, 8670