Three-dimensional motion of liver tumors using cine-magnetic resonance imaging

被引:88
作者
Kirilova, Anna [1 ]
Lockwood, Gina [2 ]
Math, M.
Choi, Perry [3 ]
Bana, Neelufer [3 ]
Haider, Masoom A. [4 ]
Brock, Kristy K. [1 ]
Eccles, Cynthia [3 ]
Dawson, Laura A. [3 ]
机构
[1] Univ Toronto, Princess Margaret Hosp, Dept Radiat Phys, Toronto, ON M5G 2M9, Canada
[2] Univ Toronto, Princess Margaret Hosp, Dept Biostat, Toronto, ON M5G 2M9, Canada
[3] Univ Toronto, Princess Margaret Hosp, Dept Radiat Oncol, Toronto, ON M5G 2M9, Canada
[4] Univ Toronto, Princess Margaret Hosp, Dept Med Imaging, Toronto, ON M5G 2M9, Canada
来源
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS | 2008年 / 71卷 / 04期
关键词
cine-MRI; hepatobiliary cancer; liver metastases; organ motion;
D O I
10.1016/j.ijrobp.2007.11.026
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: To measure the three-dimensional motion of liver tumors using cine-magnetic resonance imaging (MRI) and compare it to the liver motion assessed using fluoroscopy. Methods and Materials: Liver and liver tumor motion were investigated in the first 36 patients with primary (n = 20) and metastatic (n = 16) liver cancer accrued to our Phase I stereotactic radiotherapy study. At simulation, all patients underwent anteroposterior fluoroscopy, and the maximal diaphragm excursion in the craniocaudal (CC) direction was observed. Cine-MRI using T-2-weighted single shot fast spin echo sequences were acquired in three orthogonal planes during free breathing through the centroid of the most dominant liver tumor. ImageJ software was used to measure the maximal motion of the tumor edges in each plane. The intra- and interobserver reproducibility was also quantified. Results: The average CC motion of the liver at fluoroscopy was 15 mm (range, 5-41). On cine-MRI, the average CC tumor motion was 15.5 mm (range, 6.9-35.4), the anteroposterior motion was 10 mm (range, 3.7-21.6), and the mediolateral motion was 7.5 mm (range, 3.8-14.8). The fluoroscopic CC diaphragm motion did not correlate well with the MRI CC tumor motion (r = 0.25). The mean intraobserver error was <2 mm in the CC, anteroposterior, and mediolateral directions, and 90% of measurements between observers were within 3 mm. Conclusions: The results of our study have shown that cine-MRI can be used to directly assess liver tumor motion in three dimensions. Tumor motion did not correlate well with the diaphragm motion measured using kilovoltage fluoroscopy. The tumor motion data from cine-MRI can be used to facilitate individualized planning target volume margins to account for breathing motion. (C) 2008 Elsevier Inc.
引用
收藏
页码:1189 / 1195
页数:7
相关论文
共 27 条
[1]   Target volume definition for upper abdominal irradiation using CT scans obtained during inhale and exhale phases [J].
Aruga, T ;
Itami, J ;
Aruga, M ;
Nakajima, K ;
Shibata, K ;
Nojo, T ;
Yasuda, S ;
Uno, T ;
Hara, R ;
Isobe, K ;
Machida, N ;
Ito, H .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2000, 48 (02) :465-469
[2]   Improvement of CT-based treatment-planning models of abdominal targets using static exhale imaging [J].
Balter, JM ;
Lam, KL ;
McGinn, CJ ;
Lawrence, TS ;
Ten Haken, RK .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 41 (04) :939-943
[3]   Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing [J].
Balter, JM ;
TenHaken, RK ;
Lawrence, TS ;
Lam, KL ;
Robertson, JM .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1996, 36 (01) :167-174
[4]   Determination of ventilatory liver movement via radiographic evaluation of diaphragm position [J].
Balter, JM ;
Dawson, LA ;
Kazanjian, S ;
McGinn, C ;
Brock, KK ;
Lawrence, T ;
Ten Haken, R .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 51 (01) :267-270
[5]   Correlation between internal fiducial tumor motion and external marker motion for liver tumors imaged with 4D-CT [J].
Beddar, A. Sam ;
Kainz, Kristofer ;
Briere, Tina Marie ;
Tsunashima, Yoshikazu ;
Pan, Tinsu ;
Prado, Karl ;
Mohan, Radhe ;
Gillin, Michael ;
Krishnan, Sunil .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 67 (02) :630-638
[6]   Automated generation of a four-dimensional model of the liver using warping and mutual information [J].
Brock, KM ;
Balter, JM ;
Dawson, LA ;
Kessler, ML ;
Meyer, CR .
MEDICAL PHYSICS, 2003, 30 (06) :1128-1133
[7]   Artifacts in computed tomography scanning of moving objects [J].
Chen, GTY ;
Kung, JH ;
Beaudette, KP .
SEMINARS IN RADIATION ONCOLOGY, 2004, 14 (01) :19-26
[8]   ULTRASOUND QUANTITATION OF RESPIRATORY ORGAN MOTION IN THE UPPER ABDOMEN [J].
DAVIES, SC ;
HILL, AL ;
HOLMES, RB ;
HALLIWELL, M ;
JACKSON, PC .
BRITISH JOURNAL OF RADIOLOGY, 1994, 67 (803) :1096-1102
[9]   Reproducibility of liver position using active breathing coordinator for liver cancer radiotherapy [J].
Eccles, C ;
Brock, KK ;
Bissonnette, JP ;
Hawkins, M ;
Dawson, LA .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2006, 64 (03) :751-759
[10]   Deep inspiration breath-hold technique for lung tumors: The potential value of target immobilization and reduced lung density in dose escalation [J].
Hanley, J ;
Debois, MM ;
Mah, D ;
Mageras, GS ;
Raben, A ;
Rosenzweig, K ;
Mychalczak, B ;
Schwartz, LH ;
Gloeggler, PJ ;
Lutz, W ;
Ling, CC ;
Leibel, SA ;
Fuks, Z ;
Kutcher, GJ .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1999, 45 (03) :603-611