Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory

被引:346
作者
Ke, Liao-Liang [1 ]
Wang, Yue-Sheng [1 ]
Wang, Zheng-Dao [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Engn Mech, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Piezoelectric materials; Nonlinear vibration; Nonlocal theory; Nanobeams; Size effect; WALLED CARBON NANOTUBES; WAVE-PROPAGATION; GRAPHENE SHEETS; BUCKLING ANALYSIS; FORCE MICROSCOPE; ZNO NANOWIRES; PLATE-THEORY; ELASTICITY; SCALE; CRACK;
D O I
10.1016/j.compstruct.2012.01.023
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper investigates the nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory and Timoshenko beam theory. The piezoelectric nanobeam is subjected to an applied voltage and a uniform temperature change. The nonlinear governing equations and boundary conditions are derived by using the Hamilton principle and discretized by using the differential quadrature (DQ) method. A direct iterative method is employed to determine the nonlinear frequencies and mode shapes of the piezoelectric nanobeams. A detailed parametric study is conducted to study the influences of the nonlocal parameter, temperature change and external electric voltage on the size-dependent nonlinear vibration characteristics of the piezoelectric nanobeams. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2038 / 2047
页数:10
相关论文
共 52 条
[1]   Elasticity Size Effects in ZnO Nanowires-A Combined Experimental-Computational Approach [J].
Agrawal, Ravi ;
Peng, Bei ;
Gdoutos, Eleftherios E. ;
Espinosa, Horacio D. .
NANO LETTERS, 2008, 8 (11) :3668-3674
[2]  
[Anonymous], 2000, DIFFERENTIAL QUADRAT
[3]   Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity [J].
Ansari, R. ;
Arash, B. ;
Rouhi, H. .
COMPOSITE STRUCTURES, 2011, 93 (09) :2419-2429
[4]  
Aydogdu M., 2006, PHYSICA E, V4, P1651
[5]   Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity [J].
Aydogdu, Metin ;
Filiz, Seckin .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2011, 43 (06) :1229-1234
[6]   Size dependence of Young's modulus in ZnO nanowires [J].
Chen, CQ ;
Shi, Y ;
Zhang, YS ;
Zhu, J ;
Yan, YJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (07)
[7]   Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory [J].
Civalek, Omer ;
Demir, Cigdem .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (05) :2053-2067
[8]  
Ding HJ, 2003, J THERM STRESSES, V26, P261, DOI 10.1080/01495730390179020
[9]  
Eringen A. C., 2002, Nonlocal Continuum Field Theories