Markovian-Based Fault-Tolerant Control for Wheeled Mobile Manipulators

被引:38
作者
Kang, Yu [1 ]
Li, Zhijun [2 ]
Dong, Yifan [1 ]
Xi, Hongsheng [1 ]
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Dept Auto, Hefei 230027, Anhui, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault-tolerant control; Markov jumping; output H infinity feedback control; transition rate uncertainties; wheeled mobile manipulators; JUMP LINEAR-SYSTEMS; ROBUST STABILIZATION; MOTION/FORCE CONTROL; TIME-DELAY; STATE; ALGORITHMS;
D O I
10.1109/TCST.2011.2109062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this brief, we develop a methodology via Markovian control theory to evaluate fault- tolerant wheeled mobile manipulators. The transition rate uncertainties are allowed within an uncertainty domain. Since the velocity signals are generally not available and indirectly obtained from the measured positions, we are concerned with the output feedback control based on a high-gain observer for wheeled mobile manipulators. The objective is to design a mode-dependent dynamic output feedback controller for wheeled mobile manipulators which guarantees not only the robust stochastic stability but also a prescribed disturbance attenuation level for the resulting closed-loop system, irrespective of the transition rate uncertainties. A sufficient condition for the solvability of this problem is obtained and the expression of the desired controller is given in terms of a set of linear matrix inequalities.
引用
收藏
页码:266 / 276
页数:11
相关论文
共 26 条
  • [1] Aberkane S, 2005, IEEE DECIS CONTR P, P3783
  • [2] Robust H∞ constant gain feedback stabilization of stochastic systems
    Boukas, E. K.
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2005, 22 (03) : 334 - 349
  • [3] Boukas E.K., 2005, Stochastic hybrid systems
  • [4] On stabilization of uncertain linear systems with jump parameters
    Boukas, EK
    Shi, P
    Benjelloun, K
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (09) : 842 - 850
  • [5] Brockett R. W., 1983, DIFFERENTIAL GEOMETR
  • [6] Cao YY, 2000, IEEE T AUTOMAT CONTR, V45, P77, DOI 10.1109/9.827358
  • [7] Continuous-time state-feedback H2-control of Markovian jump linear systems via convex analysis
    Costa, OLV
    do Val, JBR
    Geromel, JC
    [J]. AUTOMATICA, 1999, 35 (02) : 259 - 268
  • [8] Esfahani SH, 2000, INT J ROBUST NONLIN, V10, P157, DOI 10.1002/(SICI)1099-1239(200003)10:3<157::AID-RNC484>3.0.CO
  • [9] 2-K
  • [10] STOCHASTIC STABILITY PROPERTIES OF JUMP LINEAR-SYSTEMS
    FENG, XB
    LOPARO, KA
    JI, YD
    CHIZECK, HJ
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (01) : 38 - 53