Graphene oxide-assisted dispersion of multi-walled carbon nanotubes in biodegradable Poly(ε-caprolactone) for mechanical and electrically conductive enhancement

被引:43
作者
Chen, Yi-Fu [1 ]
Tan, Yan-Jun [1 ]
Li, Jie [1 ]
Hao, Yong-Bo [1 ]
Shi, Yu-Dong [1 ]
Wang, Ming [1 ]
机构
[1] Southwest Univ, Sch Chem & Chem Engn, Key Lab Appl Chem Chongqing Municipal, Chongqing 400715, Peoples R China
关键词
Multi-walled carbon nanotubes; Poly(epsilon-caprolactone); Graphene oxide; Mechanical property; Electrical conductivity; POLYMER COMPOSITES; CRYSTALLIZATION BEHAVIOR; THERMAL-CONDUCTIVITY; NANOCOMPOSITES; MORPHOLOGY; FUNCTIONALIZATION; PERFORMANCE; DENSITY; NETWORK; NANOPLATELETS;
D O I
10.1016/j.polymertesting.2017.12.019
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Multi-walled carbon nanotubes (MWCNTs) are known for improving the mechanical and electrical properties of polymers. The dispersion state of MWCNTs in the polymer matrix is critical for the fabrication of high-performance nanocomposites. Here, we show a simple strategy for tuning the dispersion state of MWCNTs in poly(ecaprolactone) (PCL) via graphene oxide (GO) nanosheets and to further balance electrical and mechanical properties of the PCL/MWCNT nanocomposites. The strong pi -pi interactions between MWCNTs and GO nanosheets lead to easy adsorption of MWCNTs on GO nanosheet surfaces to form GO/MWCNT hybrids that retard the aggregation of MWCNTs in PCL. Furthermore, the GO/MWCNT ratio could also affect the dispersion of GO/ MWCNT hybrids in PCL. Three different dispersion states of MWCNTs were found in the PCL matrix, i.e. PCL/ MWCNT, PCL/GO/MWCNT (1/4) and PCL/GO/MWCNT (2/1) nanocomposites that represented severe, low and almost no aggregation of MWCNTs, respectively. The GO/MWCNT hybrids with a 2/1 ratio showed better dispersion in PCL matrix than the hybrids with a 1/4 ratio and pristine MWCNTs. The PCL/GO/MWCNT nanocomposites with almost no aggregation of GO/MWCNT (2/1) hybrids exhibited the highest tensile strength and elongation at break in comparison to the PCL/GO/MWCNT (1/4) nanocomposites and PCL/MWCNT nanocomposites. However, the best electrical conductivity was achieved in the PCL/GO/MWCNT (1/4) nano composites due to the low aggregation of MWCNTs.
引用
收藏
页码:387 / 397
页数:11
相关论文
共 61 条
[1]   Enhanced Hydrogen Storage in Graphene Oxide-MWCNTs Composite at Room Temperature [J].
Aboutalebi, Seyed Hamed ;
Aminorroaya-Yamini, Sima ;
Nevirkovets, Ivan ;
Konstantinov, Konstantin ;
Liu, Hua Kun .
ADVANCED ENERGY MATERIALS, 2012, 2 (12) :1439-1446
[2]   In Situ Formation of Nanohybrid Shish-Kebabs during Electrospinning for the Creation of Hierarchical Shish-Kebab Structures [J].
Arras, Matthias M. L. ;
Jana, Richard ;
Muhlstadt, Mike ;
Maenz, Stefan ;
Andrews, Joseph ;
Su, Zhiqiang ;
Grasl, Christian ;
Jandt, Klaus D. .
MACROMOLECULES, 2016, 49 (09) :3550-3558
[3]   Chemically functionalized carbon nanotubes [J].
Balasubramanian, K ;
Burghard, M .
SMALL, 2005, 1 (02) :180-192
[4]   Non-covalent functionalization of carbon nanotubes with polymers [J].
Bilalis, Panayiotis ;
Katsigiannopoulos, Dimitrios ;
Avgeropoulos, Apostolos ;
Sakellariou, Georgios .
RSC ADVANCES, 2014, 4 (06) :2911-2934
[5]   Parametric analysis of sonication and centrifugation variables for dispersion of single walled carbon nanotubes in aqueous solutions of sodium dodecylbenzene sulfonate [J].
Blanch, Adam J. ;
Lenehan, Claire E. ;
Quinton, Jamie S. .
CARBON, 2011, 49 (15) :5213-5228
[6]   Aggregation Kinetics and Transport of Single-Walled Carbon Nanotubes at Low Surfactant Concentrations [J].
Bouchard, Dermont ;
Zhang, Wei ;
Powell, Tremaine ;
Rattanaudompol, U-sa .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (08) :4458-4465
[7]   Polylactide nanocomposites with functionalized carbon nanotubes and their stereocomplexes: A focused review [J].
Brzezinski, Marek ;
Biela, Tadeusz .
MATERIALS LETTERS, 2014, 121 :244-250
[8]   Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites [J].
Chatterjee, S. ;
Nafezarefi, F. ;
Tai, N. H. ;
Schlagenhauf, L. ;
Nueesch, F. A. ;
Chu, B. T. T. .
CARBON, 2012, 50 (15) :5380-5386
[9]   Highly conductive and stretchable polymer composites based on graphene/MWCNT network [J].
Chen, Mengting ;
Tao, Tao ;
Zhang, Ling ;
Gao, Wei ;
Li, Chunzhong .
CHEMICAL COMMUNICATIONS, 2013, 49 (16) :1612-1614
[10]   One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor [J].
Chen, Xi'an ;
Chen, Xiaohua ;
Zhang, Fengqiao ;
Yang, Zhi ;
Huang, Shaming .
JOURNAL OF POWER SOURCES, 2013, 243 :555-561