A benzimidazole-based turn-off fluorescent sensor for selective detection of mercury (II)

被引:29
作者
Ergun, Emine Gul Cansu [1 ]
Ertas, Gulay [2 ]
Eroglu, Deniz [2 ]
机构
[1] Baskent Univ, Dept Elect & Elect Engn, TR-06810 Ankara, Turkey
[2] Middle East Tech Univ, Dept Chem, TR-06800 Ankara, Turkey
关键词
Mercury (II); Fluorescent sensor; Conjugated molecule; Benzimidazole based donor-acceptor-donor systems; HG2+ IONS; RECOGNITION; CHEMOSENSOR; PROBES; SHIFT; ICT;
D O I
10.1016/j.jphotochem.2020.112469
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, potential fluorescent sensing ability of a donor-acceptor-donor type conjugated molecule over various metal ions (Ni(II), Zn(II), Cu(II), Cd(II), Pb(II), Fe(II), Fe(III), As(III), Se(IV), Hg(I) and Hg(II)) was investigated. The sensor basically includes benzimidazole and 3,4-propylenedioxythiophene as the acceptor and donor units, respectively. Solution of the sensor in tetrahydrofuran exhibits an emission with having a maximum at 632 nm. Since having insolubility of some ions in tetrahydrofuran, ion solutions were prepared in deionized water and titrations were performed by stepwise additions of ions into sensor solution in tetrahydrofuran. The control experiment including only deionized water resulted in 7 nm red-shift and 71 % quenching in the emission band. On the other hand, upon 1.07 eq. addition of Hg(II), 25 nm red-shift and 88 % fluorescent quenching were observed, exhibiting a difference among other ions. The corresponding spectral-shift and quenching amounts in the emission were found to be time-dependent and reach to equilibrium after 10 min. Studies showed that Hg(II) in aqueous solutions can be selectively detected even in the presence of other ions. Moreover, presence of Hg(II) (0.36 eq or beyond) changed the color of the sensor solution from pink to pale violet, which can be followed by the naked eye. In the light of these results, the reported sensor can be assigned as a fluorescent and a chromogenic sensor for Hg(II) detection. Limit of quantification was found to be 39.2 nM, which is comparable to the most of the fluorescent Hg(II) sensors in the literature.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Imidazopyridine Based Fluorescent Turn-Off Sensor for Selective Recognition of Fe3+ Ions and its Application in Test Strips [J].
Manhas, Akanksha ;
Sasan, Sonakshi ;
Devi, Lalita ;
Sharma, Manu ;
Changotra, Avtar ;
Kumar, Pawan ;
Kapoor, Kamal K. .
JOURNAL OF FLUORESCENCE, 2025,
[32]   Fluoride-driven 'turn on' ESPT in the binding with a novel benzimidazole-based sensor [J].
Liu, Kai ;
Zhao, Xiaojun ;
Liu, Qingxiang ;
Huo, Jianzhong ;
Zhu, Bolin ;
Diao, Shihua .
Beilstein Journal of Organic Chemistry, 2015, 11 :563-567
[33]   A turn on fluorescent sensor based on lanthanide coordination polymer nanoparticles for the detection of mercury(II) in biological fluids [J].
Li, Qian ;
Wang, Chengjuan ;
Tan, Hongliang ;
Tang, Gonge ;
Gao, Jie ;
Chen, Chia-Hung .
RSC ADVANCES, 2016, 6 (22) :17811-17817
[34]   A New, Extremely Sensitive, Turn-Off Optical Sensor Utilizing Schiff Base for Fast Detection of Cu(II) [J].
Aroua, Lotfi M. ;
Ali, Reham ;
Albadri, Abuzar E. A. E. ;
Messaoudi, Sabri ;
Alminderej, Fahad M. ;
Saleh, Sayed M. .
BIOSENSORS-BASEL, 2023, 13 (03)
[35]   A New Fluorescent "Turn-Off" Coumarin-Based Chemosensor: Synthesis, Structure and Cu-Selective Fluorescent Sensing in Water Samples [J].
Karaoglu, Kaan ;
Yilmaz, Fatih ;
Mentese, Emre .
JOURNAL OF FLUORESCENCE, 2017, 27 (04) :1293-1298
[36]   The first tryptophan based turn-off chemosensor for Fe2+ ion detection [J].
Nagarajan, Rajendran ;
Vanjare, Balasaheb D. ;
Lee, Ki Hwan .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2021, 262
[37]   A new pyridine-dicarbohydrazide-based turn-off fluorescent and colorimetric chemosensor for selective recognition of Cu2+ [J].
Zamani, Ali ;
Sarrafi, Yaghoub ;
Rouzbahani, Mina Roustaei ;
Tajbakhsh, Mahmood .
JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMISTRY, 2023, 103 (7-8) :277-288
[38]   Selective Fluorescent Turn-Off Detection of Picric Acid Using a Novel Tripodal Supramolecular Triazole-Trindane-Based Receptor [J].
Bharadwaj, Vinita ;
Park, Jung Eun ;
Sahoo, Suban K. ;
Choi, Heung-Jin .
CHEMISTRYSELECT, 2019, 4 (36) :10895-10901
[39]   A new pyridine-dicarbohydrazide-based turn-off fluorescent and colorimetric chemosensor for selective recognition of Cu2+ [J].
Ali Zamani ;
Yaghoub Sarrafi ;
Mina Roustaei Rouzbahani ;
Mahmood Tajbakhsh .
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2023, 103 :277-288
[40]   A Coumarin-based Fluorescent Sensor for Selective Detection of Copper (II) [J].
Wang, Jian-Hong ;
Guo, Xin-Ling ;
Hou, Xu-Feng ;
Zhao, Hui-Jun ;
Luo, Zhao-Yang ;
Zhao, Jin .
BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2014, 35 (08) :2400-2402