In Vivo Flow Cytometry: A Horizon of Opportunities

被引:114
作者
Tuchin, Valery V. [1 ,2 ,3 ]
Tarnok, Attila [4 ]
Zharov, Vladimir P. [5 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Res Educ Inst Opt & Biophoton, Saratov 410012, Russia
[2] Russian Acad Sci, Inst Precise Mech & Control, Saratov 410028, Russia
[3] Univ Oulu, FI-90014 Oulu, Finland
[4] Univ Leipzig, Pediatr Cardiol Heart Ctr, D-04289 Leipzig, Germany
[5] Univ Arkansas Med Sci, Phillips Class Laser & Nanomed Labs, Little Rock, AR 72205 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
flow cytometry; spectral imaging; photoacoustic and photothermal methods; fluorescence; Raman spectroscopy; blood and lymph flows; circulating tumor cells; bacteria; and multicolor nanoparticles; theranostics; CIRCULATING TUMOR-CELLS; LYMPH-FLOW; MULTIPLE-MYELOMA; CONTRAST AGENTS; SELECTIVE NANOPHOTOTHERMOLYSIS; PHOTOACOUSTIC DETECTION; SINGLE MICROVESSELS; DYNAMIC MICROSCOPY; GOLD NANOPARTICLES; CANCER-CELLS;
D O I
10.1002/cyto.a.21143
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Flow cytometry (FCM) has been a fundamental tool of biological discovery for many years. Invasive extraction of cells from a living organism, however, may lead to changes in cell properties and prevents studying cells in their native environment. These problems can be overcome by use of in vivo FCM, which provides detection and imaging of circulating normal and abnormal cells directly in blood or lymph flow. The goal of this review is to provide a brief history, features, and challenges of this new generation of FCM methods and instruments. Spectrum of possibilities of in vivo FCM in biological science (e.g., cell metabolism, immune function, or apoptosis) and medical fields (e.g., cancer, infection, and cardiovascular disorder) including integrated photoacoustic-photothermal theranostics of circulating abnormal cells are discussed with focus on recent advances of this new platform. (C) 2011 International Society for Advancement of Cytometry
引用
收藏
页码:737 / 745
页数:9
相关论文
共 137 条
[11]  
BEDNOV AA, 1996, P SOC PHOTO-OPT INS, V2732, P27
[12]   In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues [J].
Biris, Alexandru S. ;
Galanzha, Ekaterina I. ;
Li, Zhongrui ;
Mahmood, Meena ;
Xu, Yang ;
Zharov, Vladimir P. .
JOURNAL OF BIOMEDICAL OPTICS, 2009, 14 (02)
[13]   Portable two-color in vivo flow cytometer for real-time detection of fluorescently-labeled circulating cells [J].
Boutrus, Steven ;
Greiner, Cherry ;
Hwu, Derrick ;
Chan, Michael ;
Kuperwasser, Charlotte ;
Lin, Charles P. ;
Georgakoudi, Irene .
JOURNAL OF BIOMEDICAL OPTICS, 2007, 12 (02)
[14]  
Brill' G E, 2001, Ross Fiziol Zh Im I M Sechenova, V87, P600
[15]   Influence of low power laser irradiation on lymph microcirculation at the increasing of NO production [J].
Brill, GE ;
Tuchin, VV ;
Zakharova, EI ;
Ul'aynov, SS .
SARATOV FALL MEETING '98: LIGHT SCATTERING TECHNOLOGIES FOR MECHANICS, BIOMEDICINE, AND MATERIAL SCIENCE, 1999, 3726 :157-162
[16]   Fiber-optic multiphoton flow cytometry in whole blood and in vivo [J].
Chang, Yu-Chung ;
Ye, Jing Yong ;
Thomas, Thommey P. ;
Cao, Zhengyi ;
Kotlyar, Alina ;
Tkaczyk, Eric R. ;
Baker, James R., Jr. ;
Norris, Theodore B. .
JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (04)
[17]   Microfluidic Impedance-Based Flow Cytometry [J].
Cheung, Karen C. ;
Di Berardino, Marco ;
Schade-Kampmann, Grit ;
Hebeisen, Monika ;
Pierzchalski, Arkadiusz ;
Bocsi, Jozsef ;
Mittag, Anja ;
Tarnok, Attila .
CYTOMETRY PART A, 2010, 77A (07) :648-666
[18]  
DELAZERDA A, CONTRAST ME IN PRESS
[19]   Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics [J].
Dixon, J. Brandon ;
Greiner, Steven T. ;
Gashev, Anatoliy A. ;
Cote, Gerard L. ;
Moore, James E., Jr. ;
Zawieja, David C. .
MICROCIRCULATION, 2006, 13 (07) :597-610
[20]   Measuring microlymphatic flow using fast video microscopy -: art. no. 064016 [J].
Dixon, JB ;
Zawieja, DC ;
Gashev, AA ;
Coté, GL .
JOURNAL OF BIOMEDICAL OPTICS, 2005, 10 (06)