Instrumentation for video-rate near-infrared diffuse optical tomography

被引:16
作者
Piao, D [1 ]
Dehghani, H [1 ]
Jiang, S [1 ]
Srinivasan, S [1 ]
Pogue, BW [1 ]
机构
[1] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1063/1.2149147
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This article describes the design, rationale, and system performance of a rapid imaging near-infrared diffuse optical tomography system that is capable of collecting tomographic measurements at video rate. Data-acquisition speed of 35 frames/s is achieved by spectral encoding of the sources, followed by spectral decoding of all detection channels in parallel in a spectrometer and using charge-coupled-device (CCD)-based detection. The combination of spectral decoding of the source lights horizontally in a spectrometer and spatial separation of the detector positions vertically at the entrance slit provides separate data for the entire set of source-detector pairs which can be acquired at the frame rate of the CCD camera. The described system features eight sources at an overall 785 nm center band with an average of 1.25 nm spacing in wavelength and eight detectors evenly deployed in a 27 mm array designed for imaging with small animal tissues. The system performs with localization error of 2.5 mm, and absorption recovering uncertainty of 16.7%. The point spread function of the imaging is estimated to be 4.1 mm when near to the edge and 10.4 mm at the center of the imaging array. Capture of transient changes of absorption coefficient in a dynamic phantom are also presented. (c) 2005 American Institute of Physics.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 31 条
[1]   Optical imaging in medicine .2. Modelling and reconstruction [J].
Arridge, SR ;
Hebden, JC .
PHYSICS IN MEDICINE AND BIOLOGY, 1997, 42 (05) :841-853
[2]   Optical tomographic imaging of dynamic features of dense-scattering media [J].
Barbour, RL ;
Graber, HL ;
Pei, YL ;
Zhong, S ;
Schmitz, CH .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (12) :3018-3036
[3]  
BRUKILACCHIO TJ, 2002, P BIOM TOP M OS MIAM, P178
[4]   Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging [J].
Culver, JP ;
Choe, R ;
Holboke, MJ ;
Zubkov, L ;
Durduran, T ;
Slemp, A ;
Ntziachristos, V ;
Chance, B ;
Yodh, AG .
MEDICAL PHYSICS, 2003, 30 (02) :235-247
[5]   Three-dimensional optical tomography: resolution in small-object imaging [J].
Dehghani, H ;
Pogue, BW ;
Jiang, SD ;
Brooksby, B ;
Paulsen, KD .
APPLIED OPTICS, 2003, 42 (16) :3117-3128
[6]   Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results [J].
Dehghani, H ;
Pogue, BW ;
Poplack, SP ;
Paulsen, KD .
APPLIED OPTICS, 2003, 42 (01) :135-145
[7]   Frequency-domain optical mammography: Edge effect corrections [J].
Fantini, S ;
Franceschini, MA ;
Gaida, G ;
Gratton, E ;
Jess, H ;
Mantulin, WW ;
Moesta, KT ;
Schlag, PM ;
Kaschke, M .
MEDICAL PHYSICS, 1996, 23 (01) :149-157
[8]   Frequency-domain techniques enhance optical mammography: Initial clinical results [J].
Franceschini, MA ;
Moesta, KT ;
Fantini, S ;
Gaida, G ;
Gratton, E ;
Jess, H ;
Mantulin, WW ;
Seeber, M ;
Schlag, PM ;
Kaschke, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (12) :6468-6473
[9]   Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents [J].
Hawrysz, DJ ;
Sevick-Muraca, EM .
NEOPLASIA, 2000, 2 (05) :388-417
[10]   Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography [J].
Hebden, JC ;
Gibson, A ;
Austin, T ;
Yusof, RM ;
Everdell, N ;
Delpy, DT ;
Arridge, SR ;
Meek, JH ;
Wyatt, JS .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (07) :1117-1130