Transport through side-coupled double quantum dots: From weak to strong interdot coupling

被引:21
作者
Baines, D. Y. [1 ,2 ]
Meunier, T. [1 ,2 ]
Mailly, D. [3 ]
Wieck, A. D. [4 ]
Baeuerle, C. [1 ,2 ]
Saminadayar, L. [1 ,2 ]
Cornaglia, Pablo S. [5 ,6 ,7 ]
Usaj, Gonzalo [5 ,6 ,7 ]
Balseiro, C. A. [5 ,6 ,7 ]
Feinberg, D. [1 ,2 ]
机构
[1] CNRS, Inst Neel, F-38042 Grenoble, France
[2] Univ Grenoble 1, F-38042 Grenoble, France
[3] CNRS, Lab Photon & Nanostruct, F-91460 Marcoussis, France
[4] Ruhr Univ Bochum, Lehrstuhl Angew Festkorperphys, D-44780 Bochum, Germany
[5] Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[6] CNEA, Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[7] Consejo Nacl Invest Cient & Tecn CONICET, San Miguel De Tucuman, Argentina
关键词
OSCILLATIONS;
D O I
10.1103/PhysRevB.85.195117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report low-temperature transport measurements through a double-quantum-dot device in a configuration where one of the quantum dots is coupled directly to the source and drain electrodes, and a second (side-coupled) quantum dot interacts electrostatically and via tunneling to the first one. As the interdot tunneling coupling increases, a crossover from weak to strong interdot tunneling is observed in the charge stability diagrams that present a complex pattern with mergings and apparent crossings of Coulomb blockade peaks. While the weak-coupling regime can be understood by considering a single level on each dot, in the intermediate-and strong-coupling regimes, the multilevel nature of the quantum dots needs to be taken into account. Surprisingly, both in the strong-and weak-coupling regimes, the double-quantum-dot states are mainly localized on each dot for most values of the parameters. Only in an intermediate-coupling regime does the device present a single dotlike molecular behavior as the molecular wave functions weight is evenly distributed between the quantum dots. At temperatures larger than the interdot coupling energy scale, a loss of coherence of the molecular states is observed.
引用
收藏
页数:8
相关论文
共 47 条
[21]   Mesoscopic kondo screening effect in a single-electron transistor embedded in a metallic ring [J].
Hu, H ;
Zhang, GM ;
Yu, L .
PHYSICAL REVIEW LETTERS, 2001, 86 (24) :5558-5561
[22]   Hilbert-space structure of a solid-state quantum computer: Two-electron states of a double-quantum-dot artificial molecule [J].
Hu, XD ;
Das Sarma, S .
PHYSICAL REVIEW A, 2000, 61 (06) :19
[23]   Functional renormalization group approach to transport through correlated quantum dots [J].
Karrasch, C. ;
Enss, T. ;
Meden, V. .
PHYSICAL REVIEW B, 2006, 73 (23)
[24]   THE SINGLE-ELECTRON TRANSISTOR [J].
KASTNER, MA .
REVIEWS OF MODERN PHYSICS, 1992, 64 (03) :849-858
[25]   Mesoscopic Kondo problem [J].
Kaul, RK ;
Ullmo, D ;
Chandrasekharan, S ;
Baranger, HU .
EUROPHYSICS LETTERS, 2005, 71 (06) :973-979
[26]   Driven coherent oscillations of a single electron spin in a quantum dot [J].
Koppens, F. H. L. ;
Buizert, C. ;
Tielrooij, K. J. ;
Vink, I. T. ;
Nowack, K. C. ;
Meunier, T. ;
Kouwenhoven, L. P. ;
Vandersypen, L. M. K. .
NATURE, 2006, 442 (7104) :766-771
[27]  
Kouwenhoven LP, 1997, NATO ADV SCI I E-APP, V345, P105
[28]   Quantum computation with quantum dots [J].
Loss, D ;
DiVincenzo, DP .
PHYSICAL REVIEW A, 1998, 57 (01) :120-126
[29]   LANDAUER FORMULA FOR THE CURRENT THROUGH AN INTERACTING ELECTRON REGION [J].
MEIR, Y ;
WINGREEN, NS .
PHYSICAL REVIEW LETTERS, 1992, 68 (16) :2512-2515
[30]   Effect of Disorder on the Quantum Coherence in Mesoscopic Wires [J].
Niimi, Y. ;
Baines, Y. ;
Capron, T. ;
Mailly, D. ;
Lo, F. -Y. ;
Wieck, A. D. ;
Meunier, T. ;
Saminadayar, L. ;
Baeuerle, C. .
PHYSICAL REVIEW LETTERS, 2009, 102 (22)