On m-ovoids of symplectic polar spaces

被引:5
作者
Feng, Tao [1 ]
Wang, Ye [1 ]
Xiang, Qing [2 ]
机构
[1] Zhejiang Univ, Sch Math Sci, 38 Zheda Rd, Hangzhou 310027, Zhejiang, Peoples R China
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
中国国家自然科学基金;
关键词
Cyclotomic class; Intriguing set; m-ovoid; Strongly regular graph; Symplectic polar space; REGULAR CAYLEY-GRAPHS; INTRIGUING SETS; TIGHT SETS; CONSTRUCTIONS;
D O I
10.1016/j.jcta.2020.105279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we develop a new method for constructing movoids in the symplectic polar space W(2r - 1, p(e)) from some strongly regular Cayley graphs constructed in [6]. Using this method, we obtain many new m-ovoids which can not be derived by field reduction. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 21 条
[1]  
[Anonymous], 2001, GRADUATE TEXTS MATH
[2]  
Bamberg J., 2017, FIN GEOM 5 ISR C
[3]   Tight sets and m-ovoids of finite polar spaces [J].
Bamberg, John ;
Kelly, Shane ;
Law, Maska ;
Penttila, Tim .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (07) :1293-1314
[4]   A New Infinite Family of Hemisystems of the Hermitian Surface [J].
Bamberg, John ;
Lee, Melissa ;
Momihara, Koji ;
Xiang, Qing .
COMBINATORICA, 2018, 38 (01) :43-66
[5]   Tight sets and m-ovoids of generalised quadrangles [J].
Bamberg, John ;
Law, Maska ;
Penttila, Tim .
COMBINATORICA, 2009, 29 (01) :1-17
[6]   Cyclotomy and strongly regular graphs [J].
Brouwer, AE ;
Wilson, RM ;
Xiang, Q .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1999, 10 (01) :25-28
[7]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[8]   THE GEOMETRY OF 2-WEIGHT CODES [J].
CALDERBANK, R ;
KANTOR, WM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :97-122
[9]   On m-ovoids of W3(q) [J].
Cossidente, A. ;
Culbert, C. ;
Ebert, G. L. ;
Marino, G. .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (01) :76-84
[10]   On intriguing sets of finite symplectic spaces [J].
Cossidente, Antonio ;
Pavese, Francesco .
DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (05) :1161-1174