On asymptotics of solutions to semilinear elliptic equations near the first eigenvalue of the nonperturbed problem

被引:1
作者
Il'yasov, YS [1 ]
机构
[1] Russian Acad Sci, Math Inst, Moscow 117901, Russia
关键词
elliptic boundary value problem; eigenvalue problem; constrained variational problem; basic solution; asymptotic solution; fibering method;
D O I
10.1007/BF02314627
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following elliptic equations with p-Laplacian -Delta(p)u = lambda g(x)/u/(P-2)u + f(x)/u/(gamma-2)u are considered in the entire space R-N and in the bounded domain with the Dirichlet boundary conditions. By the fibering method for the basic positive solutions of these equations, we derive the following asymptotic formula u(lambda) = (lambda(1) - lambda)(1/(gamma-p))u(1) + o((lambda(1) - lambda)(1/(gamma-p))) for lambda dagger lambda(1), where lambda(1) is the first eigenvalue and u(1) is the corresponding eigenfunction of nonperturbed problem (f = 0).
引用
收藏
页码:471 / 475
页数:5
相关论文
共 7 条
[1]   ON SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE NONLINEARITIES [J].
ALAMA, S ;
TARANTELLO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (04) :439-475
[2]  
BERESTYCKI H, 1993, CR ACAD SCI I-MATH, V317, P945
[3]   Positive solutions for the p-Laplacian: application of the fibrering method [J].
Drabek, P ;
Pohozaev, SI .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :703-726
[4]  
DRABEK P, 1996, ELLIPTIC EQUATIONS S
[6]  
PINO MA, 1995, T AM MATH SOC, V347, P4839
[7]  
POKHOZHAEV SI, 1990, T MAT I VA STEKLOVA, V192, P140