Fabrication of bimetallic metal-organic frameworks derived cobalt iron alloy@carbon-carbon nanotubes composites as ultrathin and high-efficiency microwave absorbers

被引:52
作者
Shu, Ruiwen [1 ,2 ]
Wu, Yue [2 ]
Li, Xiaohui [2 ]
Li, Ningning [2 ]
Shi, Jianjun [2 ]
机构
[1] Anhui Univ Sci & Technol, State Key Lab Min Response & Disaster Prevent & C, Huainan 232001, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Chem Engn, Huainan 232001, Peoples R China
基金
中国博士后科学基金;
关键词
Metal-organic frameworks; Magnetic; carbon composites; Nitrogen-doping; Pyrolysis; Microwave absorption; ELECTROMAGNETIC-WAVE ABSORPTION; POROUS CARBON; PERFORMANCE; GRAPHENE; NANOCOMPOSITES; LIGHTWEIGHT; AEROGELS; OXIDE;
D O I
10.1016/j.jcis.2022.01.063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing lightweight and high-efficiency microwave absorbents derived from metal-organic frameworks (MOFs) was proven to be a promising strategy to solve the increasingly serious problem of electromagnetic radiation pollution. In this work, nitrogen-doped cobalt iron alloy@carbon-carbon nanotubes (CoFe alloy@C-CNTs) composites were fabricated through an aging and pyrolysis two-step method. Results revealed that the attained composites presented a unique four-pointed star morphology and lots of CoFe alloy nanoparticles were uniformly embedded into the porous carbon matrix. Moreover, it was found that the pyrolysis temperature had a notable effect on the microwave absorption properties of CoFe alloy@C-CNTs composites. Remarkably, the obtained composite under 700.0 degrees C pyrolysis treatment showed the optimal minimum reflection loss of-54.5 dB with an ultrathin thickness of 1.4 mm and maximum effective absorption bandwidth of 5.0 GHz at a low thickness of 1.6 mm. Additionally, the possible electromagnetic attenuation loss mechanisms of attained composites were illuminated. It was believed that our results could be helpful for fabricating ultrathin and high-performance microwave absorbing materials derived from MOFs. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:477 / 487
页数:11
相关论文
共 71 条
[1]   One-dimensional Ni@Co/C@PPy composites for superior electromagnetic wave absorption [J].
Bi, Yuxin ;
Ma, Mingliang ;
Liao, Zijian ;
Tong, Zhouyu ;
Chen, Yan ;
Wang, Rongzhen ;
Ma, Yong ;
Wu, Guanglei .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 605 :483-492
[2]   Ferroferric Oxide/Multiwalled Carbon Nanotube vs Polyaniline/Ferroferric Oxide/Multiwalled Carbon Nanotube Multiheterostructures for Highly Effective Microwave Absorption [J].
Cao, Mao-Sheng ;
Yang, Jian ;
Song, Wei-Li ;
Zhang, De-Qing ;
Wen, Bo ;
Jin, Hai-Bo ;
Hou, Zhi-Ling ;
Yuan, Jie .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (12) :6949-6956
[3]   The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J].
Cao, Mao-Sheng ;
Song, Wei-Li ;
Hou, Zhi-Ling ;
Wen, Bo ;
Yuan, Jie .
CARBON, 2010, 48 (03) :788-796
[4]   Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion [J].
Cao, Maosheng ;
Wang, Xixi ;
Cao, Wenqiang ;
Fang, Xiaoyong ;
Wen, Bo ;
Yuan, Jie .
SMALL, 2018, 14 (29)
[5]   Fabrication of three-dimensional nitrogen-doped reduced graphene oxide/tin oxide composite aerogels as high-performance electromagnetic wave absorbers [J].
Deng, Lanlan ;
Zhang, Jiabin ;
Shu, Ruiwen .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 602 :282-290
[6]  
Di X., 2022, CARBON, V187, P404
[7]   Wheat flour-derived nanoporous carbon@ZnFe2O4 hierarchical composite as an outstanding microwave absorber [J].
Di, Xiaochuang ;
Wang, Yan ;
Fu, Yuqiao ;
Wu, Xinming ;
Wang, Ping .
CARBON, 2021, 173 (173) :174-184
[8]   Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: tunable surface area and electromagnetic wave absorption properties [J].
Feng, Wei ;
Wang, Yaming ;
Chen, Junchen ;
Li, Baoqiang ;
Guo, Lixin ;
Ouyang, Jiahu ;
Jia, Dechang ;
Zhou, Yu .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (01) :10-18
[9]   MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption [J].
Gao, Sai ;
Zhang, Guozheng ;
Wang, Yi ;
Han, Xiaopeng ;
Huang, Ying ;
Liu, Panbo .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 88 :56-65
[10]   Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption [J].
Gao, Shengtao ;
Zhang, Yuanchun ;
Xing, Honglong ;
Li, Hanxu .
CHEMICAL ENGINEERING JOURNAL, 2020, 387