Finite-temperature mutual information in a simple phase transition

被引:74
|
作者
Wilms, Johannes [1 ]
Vidal, Julien [2 ]
Verstraete, Frank [1 ]
Dusuel, Sebastien [3 ]
机构
[1] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[2] Univ Paris 06, CNRS, UMR 7600, Lab Phys Theor Mat Condensee, F-75252 Paris 05, France
[3] Lycee St Louis, F-75006 Paris, France
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2012年
基金
奥地利科学基金会;
关键词
quantum phase transitions (theory); BODY APPROXIMATION METHODS; SOLVABLE MODEL; ENTANGLEMENT; VALIDITY; SYSTEMS; ENTROPY;
D O I
10.1088/1742-5468/2012/01/P01023
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the finite-temperature behavior of the Lipkin-Meshkov-Glick model with a focus on correlation properties as measured by the mutual information. The latter, which quantifies the amount of both classical and quantum correlations, is computed exactly in the two limiting cases of vanishing magnetic field and vanishing temperature. For all other situations, numerical results provide evidence of a finite mutual information at all temperatures except at criticality. There, it diverges as the logarithm of the system size, with a prefactor that can take only two values, depending on whether the critical temperature vanishes or not. Our work provides a simple example in which the mutual information appears as a powerful tool to detect finite-temperature phase transitions, contrary to entanglement measures such as the concurrence.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Finite-temperature fidelity and von Neumann entropy in the honeycomb spin lattice with quantum Ising interaction
    Dai, Yan-Wei
    Shi, Qian-Qian
    Cho, Sam Young
    Batchelor, Murray T.
    Zhou, Huan-Qiang
    PHYSICAL REVIEW B, 2017, 95 (21)
  • [22] Quantum phase transition of a finite number of atoms in electromagnetically induced transparency media
    Robles, R. A. Robles
    Lee, Ray-Kuang
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2020, 37 (05) : 1388 - 1393
  • [23] Limit of Spin Squeezing in Finite-Temperature Bose-Einstein Condensates
    Sinatra, A.
    Witkowska, E.
    Dornstetter, J-C.
    Li, Yun
    Castin, Y.
    PHYSICAL REVIEW LETTERS, 2011, 107 (06)
  • [24] Mechanisms of finite-temperature magnetism in the three-dimensional Hubbard model
    Hirschmeier, Daniel
    Hafermann, Hartmut
    Gull, Emanuel
    Lichtenstein, Alexander I.
    Antipov, Andrey E.
    PHYSICAL REVIEW B, 2015, 92 (14)
  • [25] Pair correlations in a finite-temperature 1D Bose gas
    Kheruntsyan, KV
    Gangardt, DM
    Drummond, PD
    Shlyapnikov, GV
    PHYSICAL REVIEW LETTERS, 2003, 91 (04) : 1 - 040403
  • [26] Finite-temperature scaling of quantum coherence near criticality in a spin chain
    Cheng, Weiwen
    Zhang, Zhijun
    Gong, Longyan
    Zhao, Shengmei
    EUROPEAN PHYSICAL JOURNAL B, 2016, 89 (06):
  • [27] Finite-temperature time-dependent variation with multiple Davydov states
    Wang, Lu
    Fujihashi, Yuta
    Chen, Lipeng
    Zhao, Yang
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (12):
  • [28] Exact nonequilibrium dynamics of finite-temperature Tonks-Girardeau gases
    Atas, Y. Y.
    Gangardt, D. M.
    Bouchoule, I.
    Kheruntsyan, K. V.
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [29] Finite-temperature electromagnetic-field quantization in a medium: The thermofield approach
    Kheirandish, F.
    Soltani, M.
    Jafari, M.
    PHYSICAL REVIEW A, 2011, 84 (06):
  • [30] Interacting resonant-level model in nonequilibrium: Finite-temperature effects
    Kennes, D. M.
    Meden, V.
    PHYSICAL REVIEW B, 2013, 87 (07):