Universal Quantum Multi-Qubit Entangling Gates with Auxiliary Spaces

被引:23
|
作者
Liu, Wen-Qiang [1 ,2 ,3 ]
Wei, Hai-Rui [1 ]
Kwek, Leong-Chuan [4 ,5 ,6 ,7 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Beijing Inst Technol, Sch Phys, Ctr Quantum Technol Res, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Sch Phys, Key Lab Adv Optoelect Quantum Architecture & Meas, Beijing 100081, Peoples R China
[4] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[5] UMI, CNRS UNS NUS NTU Int Joint Res Unit, MajuLab, Singapore 3654, Singapore
[6] Nanyang Technol Univ, Natl Inst Educ, Singapore 637616, Singapore
[7] Nanyang Technol Univ, Inst Adv Studies, Singapore 637616, Singapore
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
higher-dimensional space; linear optics; quantum computation; quantum circuits; quantum gates; REALIZATION; DECOMPOSITIONS;
D O I
10.1002/qute.202100136
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Universal quantum entangling gates are a crucial building block in the large-scale quantum computation and quantum communication, and it is an important task to find simple ways to implement them. Here an effective quantum circuit for the implementation of a controlled-NOT (CNOT) gate is constructed by introducing a non-computational quantum state in the auxiliary space. Furthermore, the method is extended to the construction of a general n-control-qubit Toffoli gate with (2n-1)$(2n-1)$ qubit-qudit gates and (2n-2)$(2n-2)$ single-qudit gates. Based on the presented quantum circuits, the polarization CNOT and Toffoli gates with linear optics are designed by operating on the spatial-mode degree of freedom of photons. The proposed optical schemes can be achieved with a higher success probability and no extra auxiliary photons are needed.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Demonstration of universal parametric entangling gates on a multi-qubit lattice
    Reagor, Matthew
    Osborn, Christopher B.
    Tezak, Nikolas
    Staley, Alexa
    Prawiroatmodjo, Guenevere
    Scheer, Michael
    Alidoust, Nasser
    Sete, Eyob A.
    Didier, Nicolas
    da Silva, Marcus P.
    Acala, Ezer
    Angeles, Joel
    Bestwick, Andrew
    Block, Maxwell
    Bloom, Benjamin
    Bradley, Adam
    Bui, Catvu
    Caldwell, Shane
    Capelluto, Lauren
    Chilcott, Rick
    Cordova, Jeff
    Crossman, Genya
    Curtis, Michael
    Deshpande, Saniya
    El Bouayadi, Tristan
    Girshovich, Daniel
    Hong, Sabrina
    Hudson, Alex
    Karalekas, Peter
    Kuang, Kat
    Lenihan, Michael
    Manenti, Riccardo
    Manning, Thomas
    Marshall, Jayss
    Mohan, Yuvraj
    O'Brien, William
    Otterbach, Johannes
    Papageorge, Alexander
    Paquette, Jean-Philip
    Pelstring, Michael
    Polloreno, Anthony
    Rawat, Vijay
    Ryan, Colm A.
    Renzas, Russ
    Rubin, Nick
    Russel, Damon
    Rust, Michael
    Scarabelli, Diego
    Selvanayagam, Michael
    Sinclair, Rodney
    SCIENCE ADVANCES, 2018, 4 (02):
  • [2] Quantum splitting of multi-qubit gates
    Mario Mastriani
    Optical and Quantum Electronics, 2024, 56
  • [3] Quantum splitting of multi-qubit gates
    Mastriani, Mario
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (03)
  • [4] Polar quantum channel coding with optical multi-qubit entangling gates for capacity-achieving channels
    Guo, Ying
    Lee, Moon Ho
    Zeng, Guihua
    QUANTUM INFORMATION PROCESSING, 2013, 12 (04) : 1659 - 1676
  • [5] Polar quantum channel coding with optical multi-qubit entangling gates for capacity-achieving channels
    Ying Guo
    Moon Ho Lee
    Guihua Zeng
    Quantum Information Processing, 2013, 12 : 1659 - 1676
  • [6] Compiling quantum algorithms for architectures with multi-qubit gates
    Martinez, Esteban A.
    Monz, Thomas
    Nigg, Daniel
    Schindler, Philipp
    Blatt, Rainer
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [7] Remote Implementation of Multi-qubit Quantum Phase Gates
    Wang, Dong
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (04) : 777 - 785
  • [8] Remote Implementation of Multi-qubit Quantum Phase Gates
    Dong Wang
    International Journal of Theoretical Physics, 2010, 49 : 777 - 785
  • [9] Multi-qubit Quantum Phase Gates Based on Plasmonic Nanospheres
    Ren, J.
    Zhang, X.
    2016 10TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS), 2016, : 304 - 306
  • [10] Quantum control for high-fidelity multi-qubit gates
    Spiteri, Raymond J.
    Schmidt, Marina
    Ghosh, Joydip
    Zahedinejad, Ehsan
    Sanders, Barry C.
    NEW JOURNAL OF PHYSICS, 2018, 20