Task Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSA

被引:198
|
作者
Alfakih, Taha [1 ]
Hassan, Mohammad Mehedi [1 ,2 ]
Gumaei, Abdu [1 ]
Savaglio, Claudio [3 ]
Fortino, Giancarlo [3 ]
机构
[1] King Saud Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh 11543, Saudi Arabia
[2] King Saud Univ, Res Chair Smart Technol, Riyadh 11543, Saudi Arabia
[3] Univ Calabria, Dept Informat Modeling Elect & Syst, I-87036 Arcavacata Di Rende, Italy
关键词
Mobile devices; edge computing; mobile edge computing; edge cloud computing; virtual machines; access points;
D O I
10.1109/ACCESS.2020.2981434
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, computation offloading has become an effective way to overcome the constraints of mobile devices (MDs) by offloading delay-sensitive and computation-intensive mobile application tasks to remote cloud-based data centers. Smart cities can benefit from offloading to edge points in the framework of the so-called cyber-physical-social systems (CPSS), as for example in traffic violation tracking cameras. We assume that there are mobile edge computing networks (MECNs) in more than one region, and they consist of multiple access points, multi-edge servers, and N MDs, where each MD has M independent real-time massive tasks. The MDs can connect to a MECN through the access points or the mobile network. Each task be can processed locally by theMDitself or remotely. There are three offloading options: nearest edge server, adjacent edge server, and remote cloud. We propose a reinforcement-learning-based state-action-reward-state-action (RL-SARSA) algorithm to resolve the resource management problem in the edge server, and make the optimal offloading decision for minimizing system cost, including energy consumption and computing time delay. We call this method OD-SARSA (offloading decision-based SARSA). We compared our proposed method with reinforcement learning based Q learning (RL-QL), and it is concluded that the performance of the former is superior to that of the latter.
引用
收藏
页码:54074 / 54084
页数:11
相关论文
共 50 条
  • [21] Task graph offloading via deep reinforcement learning in mobile edge computing
    Liu, Jiagang
    Mi, Yun
    Zhang, Xinyu
    Li, Xiaocui
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 545 - 555
  • [22] Federated Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Smart Cities in a Mobile Edge Network
    Chen, Xing
    Liu, Guizhong
    SENSORS, 2022, 22 (13)
  • [23] Deep reinforcement learning-based computation offloading and resource allocation in security-aware mobile edge computing
    Ke, H. C.
    Wang, H.
    Zhao, H. W.
    Sun, W. J.
    WIRELESS NETWORKS, 2021, 27 (05) : 3357 - 3373
  • [24] Deep reinforcement learning-based computation offloading and resource allocation in security-aware mobile edge computing
    H. C. Ke
    H. Wang
    H. W. Zhao
    W. J. Sun
    Wireless Networks, 2021, 27 : 3357 - 3373
  • [25] Task Offloading for UAV-based Mobile Edge Computing via Deep Reinforcement Learning
    Li, Jun
    Liu, Qian
    Wu, Pingyang
    Shu, Feng
    Jin, Shi
    2018 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2018, : 798 - 802
  • [26] Dependent Task-Offloading Strategy Based on Deep Reinforcement Learning in Mobile Edge Computing
    Gong, Bencan
    Jiang, Xiaowei
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2023, 2023
  • [27] Deep reinforcement learning-based online task offloading in mobile edge computing networks
    Wu, Haixing
    Geng, Jingwei
    Bai, Xiaojun
    Jin, Shunfu
    INFORMATION SCIENCES, 2024, 654
  • [28] Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning
    Lu, Haifeng
    Gu, Chunhua
    Luo, Fei
    Ding, Weichao
    Liu, Xinping
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 102 : 847 - 861
  • [29] Dependent Task Offloading for Edge Computing based on Deep Reinforcement Learning
    Wang, Jin
    Hu, Jia
    Min, Geyong
    Zhan, Wenhan
    Zomaya, Albert Y.
    Georgalas, Nektarios
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (10) : 2449 - 2461
  • [30] Dependent Task Offloading and Resource Allocation via Deep Reinforcement Learning for Extended Reality in Mobile Edge Networks
    Yu, Xiaofan
    Zhou, Siyuan
    Wei, Baoxiang
    ELECTRONICS, 2024, 13 (13)