Multidegrees of tame automorphisms of Cn

被引:5
|
作者
Karas, Marek
机构
[1] Instytut Matematyki, Uniwersytet Jagielloński, 30-348 Kraków
关键词
polynomial automorphism; tame automorphism; wild automorphism; multidegree; POLYNOMIAL RING; WILD AUTOMORPHISMS; INVERSION-FORMULA; REDUCTIONS; CONJECTURE;
D O I
10.4064/dm477-0-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F = (F-1, ... , F-n) : C-n -> C-n be a polynomial mapping. By the multidegree of F we mean mdegF = (deg F-1, ... , deg F-n) is an element of N-n. The aim of this paper is to study the following problem (especially for n = 3): for which sequence (d(1), ... , d(n)) is an element of N-n is there a tame automorphism, F of C-n such that mdeg F = (d(1), ... , d(n))? In other words we investigate the set mdeg(Tame(C-n)), where Tame(C-n) denotes the group of tame automorphisms of C-n. Since mdeg(Tame(C-n)) is invariant under permutations of coordinates, we may focus on the set {((d(1), ... , d(n)) : d(1) <= ... <= d(n)} boolean AND mdeg(Tame(C-n)). Obviously, we have {(1, d(2), d(3)) : 1 <= d(2) <= d(3)} boolean AND mdeg(Tame(C-3)) = {(1, d(2), d(3)) : 1 <= d(2) <= d(3)}. Not obvious, but still easy to prove is the equality mdeg(Tame(C-3)) boolean AND {(2, d(2), d(3)) : 2 <= d(2) <= d(3)} = {(2, d(2), d(3)) :2 <= d(2) <= d(3)}. We give a complete description of the sets {(3, d(2), d(3)) : 3 <= d(2) <= d(3)} boolean AND mdeg(Tame(C-3)) and {(5, d(2), d(3)) : 5 <= d(2) <= d(3)} boolean AND mdeg(Tame(C-3)). In the examination of the last set the most difficult part is to prove that (5, 6, 9) is not an element of mdeg(Tame(C-3)). To do this, we use the two-dimensional Jacobian Conjecture (which is true for low degrees) and the Jung van der Kuljc Theorem. As a surprising consequence of the method used in proving that (5, 6, 9) is not an element of mdeg(Tame(C-3)), we show that the existence of a tame automorphism F of C-3 with mdeg F = (37, 70,105) implies that the two-dimensional Jacobian Conjecture is not true. Also, we give a complete description of the following sets: {(p(1), p(2), d(3)) : 2 < p(1) < p(2) <= d(3), p(1), p(2) prime numbers} boolean AND mdeg(Tame(C-3)), {(d(1), d(2), d(3)) : d(1) <= d(2) <= d(3), d(1), d(2) is an element of 2N + 1, gcd(d(1), d(2)) = 1} boolean AND mdeg(Tarne(C-3)). Using the description of the last set we show that mdeg(Aut(C-3)) \ mdeg(Tame(C-3)) is infinite. We also obtain a (still incomplete) description of the set mdeg(Tame(C-3)) boolean AND {(4, d(2), d(3)) : 4 <= d(2) <= d(3)} and we give complete information about mdeg F-1 for F is an element of Aut(C-2).
引用
收藏
页码:5 / +
页数:52
相关论文
共 50 条
  • [1] Multidegrees of tame automorphisms with one prime number
    Li, Jiantao
    Du, Xiankun
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (04): : 697 - 705
  • [2] TAME AUTOMORPHISMS WITH MULTIDEGREES IN THE FORM OF ARITHMETIC PROGRESSIONS
    Li, Jiantao
    Du, Xiankun
    MATHEMATICA SLOVACA, 2015, 65 (06) : 1261 - 1270
  • [3] Multidegrees of Tame Automorphisms in Dimension Three
    Sun, Xiaosong
    Chen, Yan
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2012, 48 (01) : 129 - 137
  • [4] A note on multidegrees of automorphisms of the form (exp D)☆
    Karas, M.
    Pekala, P.
    ALGEBRA AND DISCRETE MATHEMATICS, 2023, 36 (01): : 32 - 42
  • [5] Weighted multidegrees of polynomial automorphisms over a domain
    Kuroda, Shigeru
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (01) : 119 - 149
  • [6] On the Karas type theorems for the multidegrees of polynomial automorphisms
    Kuroda, Shigeru
    JOURNAL OF ALGEBRA, 2015, 423 : 441 - 465
  • [7] On Permutations Induced by Tame Automorphisms Over Finite Fields
    Hakuta, Keisuke
    ACTA MATHEMATICA VIETNAMICA, 2018, 43 (02) : 309 - 324
  • [8] TAME AUTOMORPHISMS OF ELEMENTARY FREE GROUPS
    Fine, Benjamin
    Kharlampovich, Olga G.
    Myasnikov, Alexei G.
    Remeslennikov, Vladimir N.
    Rosenberger, G.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (08) : 3386 - 3394
  • [9] DEGENERATION OF TAME AUTOMORPHISMS OF A POLYNOMIAL RING
    Kuroda, Shigeru
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (03) : 1196 - 1199
  • [10] GENERALISATIONS OF THE TAME AUTOMORPHISMS OVER A DOMAIN OF POSITIVE CHARACTERISTIC
    ERIC EDO
    SHIGERU KURODA
    Transformation Groups, 2015, 20 : 65 - 81