Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen

被引:85
作者
Ma, Quanxin [1 ]
Li, Ruhong [1 ]
Zheng, Rujuan [1 ]
Liu, Yuanlong [1 ]
Huo, Hua [1 ]
Dai, Changsong [1 ]
机构
[1] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-rich layered oxide cathodes; Selenium doping; Rate performance; Voltage decay; Stabilize oxygen; NICKEL MANGANESE OXIDES; LITHIUM-ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; SURFACE MODIFICATION; SPINEL PHASE; LIMO2; M; CAPACITY; NI; SUBSTITUTION; COMPOSITE;
D O I
10.1016/j.jpowsour.2016.08.137
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To improve the rate performance and decelerate the voltage decay of Li-rich layered oxide cathode materials, a series of cathode materials Li-1.2[Mn0.7Ni0.2Co0.1](0.8-x)SexO2 (x = 0, 0.07, 0.14 and 0.21) was synthesized via co-precipitation. Based on the characterization results, it can be concluded that uniform Se6+ doping can improve the degree of crystallinity of Li2MnO3, resulting in a better ordering of atoms in the transition metal layer of this type of cathode materials. In the electrochemical experiments, compared to un-doped samples, one of the Se doped samples (LLMO-Se-0.14) exhibited a longer sloping region and shorter potential plateau in the initial charge curves, a larger first coulombic efficiency (ca. 77%), better rate capability (178 mAhm g(-1) at 10 C) and higher mid-point voltage (MPV) retention (ca. 95%) after 100 cycles. These results prove that Se doping can effectively improve the rate capability and decelerate the voltage decay process of these cathode materials during cycling via suppressing the oxidation process of O2- to O-2 and curbing a layered-to-spinel phase transformation. The above mentioned functions of Se doping are probably due to the higher bonding energy of Se-O than that of Mn-O. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:112 / 121
页数:10
相关论文
共 50 条
  • [1] Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2
    Armstrong, A. Robert
    Holzapfel, Michael
    Novak, Petr
    Johnson, Christopher S.
    Kang, Sun-Ho
    Thackeray, Michael M.
    Bruce, Peter G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) : 8694 - 8698
  • [2] Electrochemical performance improvement of Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material by sulfur incorporation
    Ban, Liqing
    Yin, Yanping
    Zhuang, Weidong
    Lu, Huaquan
    Wang, Zhong
    Lu, Shigang
    [J]. ELECTROCHIMICA ACTA, 2015, 180 : 218 - 226
  • [3] Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2
    Bareno, J.
    Balasubramanian, M.
    Kang, S. H.
    Wen, J. G.
    Lei, C. H.
    Pol, S. V.
    Petrov, I.
    Abraham, D. P.
    [J]. CHEMISTRY OF MATERIALS, 2011, 23 (08) : 2039 - 2050
  • [4] LiMO2 (M = Ni, Co) thin film cathode materials: a correlation between the valence state of transition metals and the electrochemical properties
    Cherkashinin, G.
    Ensling, D.
    Jaegermann, W.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (10) : 3571 - 3580
  • [5] Countering the Voltage Decay in High Capacity xLi2MnO3•(1-x)LiMO2 Electrodes (M=Mn, Ni, Co) for Li+-Ion Batteries
    Croy, Jason R.
    Kim, Donghan
    Balasubramanian, Mahalingam
    Gallagher, Kevin
    Kang, Sun-Ho
    Thackeray, Michael M.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (06) : A781 - A790
  • [6] Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-Rich Layered Oxide Cathodes
    Deng, Z. Q.
    Manthiram, A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (14) : 7097 - 7103
  • [7] Sodium additive to improve rate performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 material for Li-ion batteries
    Du, Ke
    Yang, Fei
    Hu, Guo-rong
    Peng, Zhong-dong
    Cao, Yan-bing
    Ryu, Kwang Sun
    [J]. JOURNAL OF POWER SOURCES, 2013, 244 : 29 - 34
  • [8] Correlation Between Oxygen Vacancy, Microstrain, and Cation Distribution in Lithium-Excess Layered Oxides During the First Electrochemical Cycle
    Fell, Christopher R.
    Qian, Danna
    Carroll, Kyler J.
    Chi, Miaofang
    Jones, Jacob L.
    Meng, Ying Shirley
    [J]. CHEMISTRY OF MATERIALS, 2013, 25 (09) : 1621 - 1629
  • [9] Electrochemical performances of 0.9Li2MnO3-0.1Li(Mn0.375Ni0.375Co0.25)O2 cathodes: Role of the cycling induced layered to spinel phase transformation
    Ghanty, C.
    Basu, R. N.
    Majumder, S. B.
    [J]. SOLID STATE IONICS, 2014, 256 : 19 - 28
  • [10] The Li-Ion Rechargeable Battery: A Perspective
    Goodenough, John B.
    Park, Kyu-Sung
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) : 1167 - 1176