Barriers to achieving a cure in lymphoma

被引:3
作者
Kambhampati, Swetha [1 ]
Song, Joo Y. [2 ]
Herrera, Alex F. [1 ]
Chan, Wing C. [2 ]
机构
[1] City Hope Natl Med Ctr, Dept Hematol & Hematopoiet Cell Transplantat, Duarte, CA 91010 USA
[2] City Hope Natl Med Ctr, Dept Pathol, 1500 E Duarte Rd, Duarte, CA 91010 USA
关键词
Lymphoma; drug resistance; novel therapies; targeted agents; immune therapies; B-CELL LYMPHOMA; ACUTE LYMPHOBLASTIC-LEUKEMIA; ANTIBODY-DRUG CONJUGATE; CIRCULATING TUMOR DNA; NON-HODGKINS-LYMPHOMA; TYROSINE KINASE; SINGLE-ARM; OPEN-LABEL; T-CELLS; PHASE-I;
D O I
10.20517/cdr.2021.66
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Lymphoma is a diverse disease with a variety of different subtypes, each characterized by unique pathophysiology, tumor microenvironment, and underlying signaling pathways leading to oncogenesis. With our increasing understanding of the molecular biology of lymphoma, there have been a number of novel targeted therapies and immunotherapy approaches that have been developed for the treatment of this complex disease. Despite rapid progress in the field, however, many patients still relapse largely due to the development of drug resistance to these therapies. A better understanding of the mechanisms underlying resistance is needed to develop more novel treatment strategies that circumvent these mechanisms and design better treatment algorithms that personalize therapies to patients and sequence these therapies in the most optimal manner. This review focuses on the recent advances in therapies in lymphoma, including targeted therapies, monoclonal antibodies, antibody-drug conjugates, cellular therapy, bispecific antibodies, and checkpoint inhibitors. We discuss the genetic and cellular principles of drug resistance that span across all the therapies, as well as some of the unique mechanisms of resistance that are specific to these individual classes of therapies and the strategies that have been developed to address these modes of resistance.
引用
收藏
页码:965 / 983
页数:19
相关论文
共 128 条
  • [71] Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors
    Liu, Enli
    Marin, David
    Banerjee, Pinaki
    Macapinlac, Homer A.
    Thompson, Philip
    Basar, Rafet
    Kerbauy, Lucila Nassif
    Overman, Bethany
    Thall, Peter
    Kaplan, Mecit
    Nandivada, Vandana
    Kaur, Indresh
    Cortes, Ana Nunez
    Cao, Kai
    Daher, May
    Hosing, Chitra
    Cohen, Evan N.
    Kebriaei, Partow
    Mehta, Rohtesh
    Neelapu, Sattva
    Nieto, Yago
    Wang, Michael
    Wierda, William
    Keating, Michael
    Champlin, Richard
    Shpall, Elizabeth J.
    Rezvani, Katayoun
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (06) : 545 - 553
  • [72] Targeting the phosphoinositide 3-kinase pathway in cancer
    Liu, Pixu
    Cheng, Hailing
    Roberts, Thomas M.
    Zhao, Jean J.
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2009, 8 (08) : 627 - 644
  • [73] Mato AR, 2021, LANCET, V397, P892, DOI 10.1016/S0140-6736(21)00224-5
  • [74] Next-generation sequencing-based monitoring of circulating tumor DNA reveals clonotypic heterogeneity in untreated PTCL
    Miljkovic, Milos D.
    Melani, Christopher
    Pittaluga, Stefania
    Lakhotia, Rahul
    Lucas, Nicole
    Jacob, Allison
    Yusko, Erik
    Jaffe, Elaine S.
    Wilson, Wyndham H.
    Roschewski, Mark
    [J]. BLOOD ADVANCES, 2021, 5 (20) : 4198 - 4210
  • [75] Panobinostat acts synergistically with ibrutinib in diffuse large B cell lymphoma cells with MyD88 L265 mutations
    Mondello, Patrizia
    Brea, Elliott J.
    De Stanchina, Elisa
    Toska, Eneda
    Chang, Aaron Y.
    Fennell, Myles
    Seshan, Venkatraman
    Garippa, Ralph
    Scheinberg, David A.
    Baselga, Jose
    Wendel, Hans-Guido
    Younes, Anas
    [J]. JCI INSIGHT, 2017, 2 (06):
  • [76] Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma
    Neelapu, S. S.
    Locke, F. L.
    Bartlett, N. L.
    Lekakis, L. J.
    Miklos, D. B.
    Jacobson, C. A.
    Braunschweig, I.
    Oluwole, O. O.
    Siddiqi, T.
    Lin, Y.
    Timmerman, J. M.
    Stiff, P. J.
    Friedberg, J. W.
    Flinn, I. W.
    Goy, A.
    Hill, B. T.
    Smith, M. R.
    Deol, A.
    Farooq, U.
    McSweeney, P.
    Munoz, J.
    Avivi, I.
    Castro, J. E.
    Westin, J. R.
    Chavez, J. C.
    Ghobadi, A.
    Komanduri, K. V.
    Levy, R.
    Jacobsen, E. D.
    Witzig, T. E.
    Reagan, P.
    Bot, A.
    Rossi, J.
    Navale, L.
    Jiang, Y.
    Aycock, J.
    Elias, M.
    Chang, D.
    Wiezorek, J.
    Go, W. Y.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2017, 377 (26) : 2531 - 2544
  • [77] Osborne W, 2020, J CLIN ONCOL, V38
  • [78] Analysis of the coding genome of diffuse large B-cell lymphoma
    Pasqualucci, Laura
    Trifonov, Vladimir
    Fabbri, Giulia
    Ma, Jing
    Rossi, Davide
    Chiarenza, Annalisa
    Wells, Victoria A.
    Grunn, Adina
    Messina, Monica
    Elliot, Oliver
    Chan, Joseph
    Bhagat, Govind
    Chadburn, Amy
    Gaidano, Gianluca
    Mullighan, Charles G.
    Rabadan, Raul
    Dalla-Favera, Riccardo
    [J]. NATURE GENETICS, 2011, 43 (09) : 830 - U33
  • [79] Can Next-Generation PI3K Inhibitors Unlock the Full Potential of the Class in Patients With B-Cell Lymphoma?
    Phillips, Tycel J.
    Michot, Jean-Marie
    Ribrag, Vincent
    [J]. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA, 2021, 21 (01) : 8 - +
  • [80] Immunological changes with kinase inhibitor therapy for chronic lymphocytic leukemia
    Pleyer, Christopher
    Wiestner, Adrian
    Sun, Clare
    [J]. LEUKEMIA & LYMPHOMA, 2018, 59 (12) : 2792 - 2800