Design, modelling and characterization of a 3-Vppd 90-GBaud over-110-GHz-bandwidth linear driver in 0.5-μm InP DHBTs for optical communications

被引:12
作者
Hersent, R. [1 ,2 ]
Johansen, Tom K. [3 ]
Nodjiadjim, V [1 ,2 ]
Jorge, F. [1 ,2 ]
Duval, B. [1 ,2 ]
Blache, F. [1 ,2 ]
Riet, M. [1 ,2 ]
Mismer, C. [1 ,2 ]
Konczykowska, A. [1 ,2 ,4 ]
机构
[1] III V Lab, III V Si Circuits Analog Digital Interfaces CADI, Thales Res & Technol, Palaiseau, France
[2] CEA Leti, Palaiseau, France
[3] Tech Univ Denmark, Dept Elect Engn, DK-2800 Lyngby, Denmark
[4] ADesign, Lhay Les Roses, France
来源
2021 IEEE BICMOS AND COMPOUND SEMICONDUCTOR INTEGRATED CIRCUITS AND TECHNOLOGY SYMPOSIUM (BCICTS) | 2021年
基金
欧盟地平线“2020”;
关键词
Large-swing linear modulator driver; high-speed integrated circuits; Tb/s optical communications; Indium Phosphide (InP) double heterojunction bipolar transistor (DHBT); 4-level pulse amplitude modulation (PAM-4);
D O I
10.1109/BCICTS50416.2021.9682463
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, we present the modelling, design and characterization of a 3-Vppd linear-output-swing 90-GBd PAM-4 modulator driver, realised in III-V Lab's in-house 0.5-mu m InP DHBT technology (380/520-GHz f(T)/f(MAX), 4.2-V BVCE0). The driver exhibits 13-dB equalisation capabilities at 95 GHz with a bandwidth well beyond 110 GHz. It features a 0.67-W power consumption, resulting in a 1.5-GBd FoM with good output signal quality. To the best of our knowledge this linear driver shows the highest >64 GBd PAM-4 performance in current state-of-the-art, without DSP nor pre-emphasis. We also report on a newly developed 0.5-mu m InP DHBT technology and its modelling using small-value external parasitic EM-simulation extraction, showing improved high-frequency prediction accuracy at circuit level.
引用
收藏
页数:4
相关论文
共 9 条
  • [1] A DC-to-108-GHz CMOS SOI Distributed Power Amplifier and Modulator Driver Leveraging Multi-Drive Complementary Stacked Cells
    El-Aassar, Omar
    Rebeiz, Gabriel M.
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (12) : 3437 - 3451
  • [2] 106-GHz bandwidth InP DHBT linear driver with a 3-Vppdiff swing at 80 GBd in PAM-4
    Hersent, R.
    Jorge, F.
    Duval, B.
    Dupuy, J. -Y.
    Konczykowska, A.
    Riet, M.
    Nodjiadjim, V.
    Mismer, C.
    Blache, F.
    Kasbari, A.
    Ouslimani, A.
    [J]. ELECTRONICS LETTERS, 2020, 56 (14) : 691 - +
  • [3] Johansen T. K., 2007, 2007 European Microwave Integrated Circuits Conference, P447, DOI 10.1109/EMICC.2007.4412745
  • [4] Johansen T. K., 2017, 2017 INT NONL MICR M, P1, DOI [10.1109/INMMIC.2017.7927301, DOI 10.1109/INMMIC.2017.7927301]
  • [5] Johansen TK, 2017, EUR MICROW INTEGRAT, P240, DOI 10.23919/EuMIC.2017.8230704
  • [6] THE SEMICONDUCTOR TREND FROM THE FRONT-END VIEW
    Nagao, Makiko
    [J]. 2019 PAN PACIFIC MICROELECTRONICS SYMPOSIUM (PAN PACIFIC), 2019,
  • [7] 0.7-μm lnP DHBT Technology with 400-GHz fT and fMAX and 4.5-V BVCEO Speed and High Frequency Integrated Circuits
    Nodjiadjim, V
    Riet, M.
    Mismer, C.
    Hersent, R.
    Jorge, F.
    Konczykowska, A.
    Dupuy, J-Y
    [J]. IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2019, 7 (01) : 748 - 752
  • [8] Rito P., 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS), P439, DOI DOI 10.1109/MWSYM.2017.8058591
  • [9] Romain H, 2019, 2019 IEEE BICMOS AND COMPOUND SEMICONDUCTOR INTEGRATED CIRCUITS AND TECHNOLOGY SYMPOSIUM (BCICTS 2019), DOI 10.1109/BCICTS45179.2019.8972779