Stochastic segmentation models for array-based comparative genomic hybridization data analysis

被引:32
作者
Lai, Tze Leung [3 ,4 ]
Xing, Haipeng [2 ]
Zhang, Nancy [1 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Columbia Univ, Dept Stat, New York, NY 10027 USA
[3] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[4] Stanford Univ, Ctr Canc, Stanford, CA 94305 USA
关键词
array-CGH; Bayesian inference; hidden Markov models; jump probabilities;
D O I
10.1093/biostatistics/kxm031
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Array-based comparative genomic hybridization (array-CGH) is a high throughput, high resolution technique for studying the genetics of cancer. Analysis of array-CGH data typically involves estimation of the underlying chromosome copy numbers from the log fluorescence ratios and segmenting the chromosome into regions with the same copy number at each location. We propose for the analysis of array-CGH data, a new stochastic segmentation model and an associated estimation procedure that has attractive statistical and computational properties. An important benefit of this Bayesian segmentation model is that it yields explicit formulas for posterior means, which can be used to estimate the signal directly without performing segmentation. Other quantities relating to the posterior distribution that are useful for providing confidence assessments of any given segmentation can also be estimated by using our method. We propose an approximation method whose computation time is linear in sequence length which makes our method practically applicable to the new higher density arrays. Simulation studies and applications to real array-CGH data illustrate the advantages of the proposed approach.
引用
收藏
页码:290 / 307
页数:18
相关论文
共 25 条
[1]   High-resolution genome-wide mapping of genetic alterations in human glial brain tumors [J].
Bredel, M ;
Bredel, C ;
Juric, D ;
Harsh, GR ;
Vogel, H ;
Recht, LD ;
Sikic, BI .
CANCER RESEARCH, 2005, 65 (10) :4088-4096
[2]   Detection of gene copy number changes in CGH microarrays using a spatially correlated mixture model [J].
Broët, P ;
Richardson, S .
BIOINFORMATICS, 2006, 22 (08) :911-918
[3]   A pseudolikelihood approach for simultaneous analysis of array comparative genomic hybridizations [J].
Engler, David A. ;
Mohapatra, Gayatry ;
Louis, David N. ;
Betensky, Rebecca A. .
BIOSTATISTICS, 2006, 7 (03) :399-421
[4]   Instability of chromosome structure in cancer cells increases exponentially with degrees of aneuploidy [J].
Fabarius, A ;
Hehlmann, R ;
Duesberg, PH .
CANCER GENETICS AND CYTOGENETICS, 2003, 143 (01) :59-72
[5]   Hidden Markov models approach to the analysis of array CGH data [J].
Fridlyand, J ;
Snijders, AM ;
Pinkel, D ;
Albertson, DG ;
Jain, AN .
JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 90 (01) :132-153
[6]  
Guha S., 2006, HARVARD U BIOSTATIST
[7]   Multiplexed genotyping with sequence-tagged molecular inversion probes [J].
Hardenbol, P ;
Banér, J ;
Jain, M ;
Nilsson, M ;
Namsaraev, EA ;
Karlin-Neumann, GA ;
Fakhrai-Rad, H ;
Ronaghi, M ;
Willis, TD ;
Landegren, U ;
Davis, RW .
NATURE BIOTECHNOLOGY, 2003, 21 (06) :673-678
[8]   High-resolution ROMA CGH and FISH analysis of aneuploid and diploid breast tumors [J].
Hicks, J. ;
Muthuswamy, L. ;
Krasnitz, A. ;
Navin, N. ;
Riggs, M. ;
Grubor, V. ;
Esposito, D. ;
Alexander, J. ;
Troge, J. ;
Wigler, M. ;
Maner, S. ;
Lundin, P. ;
Zetterberg, A. .
Molecular Approaches to Controlling Cancer, 2005, 70 :51-63
[9]   Denoising array-based comparative genomic hybridization data using wavelets [J].
Hsu, L ;
Self, SG ;
Grove, D ;
Randolph, T ;
Wang, K ;
Delrow, JJ ;
Loo, L ;
Porter, P .
BIOSTATISTICS, 2005, 6 (02) :211-226
[10]   Analysis of array CGH data:: from signal ratio to gain and loss of DNA regions [J].
Hupé, P ;
Stransky, N ;
Thiery, JP ;
Radvanyi, F ;
Barillot, E .
BIOINFORMATICS, 2004, 20 (18) :3413-3422