Protecting Data Privacy in Federated Learning Combining Differential Privacy and Weak Encryption

被引:3
作者
Wang, Chuanyin [1 ,2 ]
Ma, Cunqing [1 ]
Li, Min [1 ,2 ]
Gao, Neng [1 ]
Zhang, Yifei [1 ]
Shen, Zhuoxiang [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
来源
SCIENCE OF CYBER SECURITY, SCISEC 2021 | 2021年 / 13005卷
关键词
Federated learning; Privacy; Differential privacy; Weak encryption;
D O I
10.1007/978-3-030-89137-4_7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a typical application of decentralization, federated learning prevents privacy leakage of crowdsourcing data for various training tasks. Instead of transmitting actual data, federated learning only updates model parameters of server by learning multiple sub-models from clients. However, these parameters may be leaked during transmission and further used by attackers to restore client data. Existing technologies used to protect parameters from privacy leakage do not achieve the sufficient protection of parameter information. In this paper, we propose a novel and efficient privacy protection method, which perturbs the privacy information contained in the parameters and completes its ciphertext representation in transmission. Regarding to the perturbation part, differential privacy is utilized to perturb the real parameters, which can minimize the privacy information contained in the parameters. To further camouflage the parameters, the weak encryption keeps the cipher-text form of the parameters as they are transmitted from the client to the server. As a result, neither the server nor any middle attacker can obtain the real information of the parameter directly. The experiments show that our method effectively resists attacks from both malicious clients and malicious server.
引用
收藏
页码:95 / 109
页数:15
相关论文
共 50 条
  • [1] Combining homomorphic encryption and differential privacy in federated learning
    Sebert, Arnaud Grivet
    Checri, Marina
    Stan, Oana
    Sirdey, Renaud
    Gouy-Pailler, Cedric
    2023 20TH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST, PST, 2023, : 145 - 151
  • [2] Privacy Preserving Federated Learning: A Novel Approach for Combining Differential Privacy and Homomorphic Encryption
    Aziz, Rezak
    Banerjee, Soumya
    Bouzefrane, Samia
    INFORMATION SECURITY THEORY AND PRACTICE, WISTP 2024, 2024, 14625 : 162 - 177
  • [3] Exploring Homomorphic Encryption and Differential Privacy Techniques towards Secure Federated Learning Paradigm
    Aziz, Rezak
    Banerjee, Soumya
    Bouzefrane, Samia
    Vinh, Thinh Le
    FUTURE INTERNET, 2023, 15 (09)
  • [4] A Survey of Differential Privacy Techniques for Federated Learning
    Wang, Xin
    Li, Jiaqian
    Ding, Xueshuang
    Zhang, Haoji
    Sun, Lianshan
    IEEE ACCESS, 2025, 13 : 6539 - 6555
  • [5] Enhancing Differential Privacy for Federated Learning at Scale
    Baek, Chunghun
    Kim, Sungwook
    Nam, Dongkyun
    Park, Jihoon
    IEEE ACCESS, 2021, 9 : 148090 - 148103
  • [6] Differential Privacy for Deep and Federated Learning: A Survey
    El Ouadrhiri, Ahmed
    Abdelhadi, Ahmed
    IEEE ACCESS, 2022, 10 : 22359 - 22380
  • [7] Evaluating Differential Privacy in Federated Continual Learning
    Ouyang, Junyan
    Han, Rui
    Liu, Chi Harold
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [8] Federated Learning with Bayesian Differential Privacy
    Triastcyn, Aleksei
    Faltings, Boi
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2587 - 2596
  • [9] Personalized Federated Learning With Differential Privacy
    Hu, Rui
    Guo, Yuanxiong
    Li, Hongning
    Pei, Qingqi
    Gong, Yanmin
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10) : 9530 - 9539
  • [10] Balancing Privacy and Performance: A Differential Privacy Approach in Federated Learning
    Tayyeh, Huda Kadhim
    AL-Jumaili, Ahmed Sabah Ahmed
    COMPUTERS, 2024, 13 (11)